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Abstract: Small data analytics, at the opposite extreme of big data analytics, represents a critical 

limitation in structural health monitoring based on spaceborne remote sensing technology. Besides 

the engineering challenge, small data is a typical demanding issue in machine learning applications 

related to the prediction of system evolutions. To address this challenge, this article proposes a par-

simonious yet robust predictive model obtained as a combination of a regression artificial neural 

network and of a Bayesian hyperparameter optimization. The final aim of the offered strategy con-

sists of the prediction of structural responses extracted from synthetic aperture radar images in re-

mote sensing. Results regarding a long-span steel arch bridge confirm that, although simple, the 

proposed method can effectively predict the structural response in terms of displacement data with 

a noteworthy overall performance. 
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1. Introduction 

Structural health monitoring (SHM) of bridge structures [1–4] has to fully account for 

the various environmental actions, such as ambient temperature, wind, moisture, and pos-

sible chemical attacks. In most cases bridges, especially long-span ones, are slender and 

are therefore susceptible to vibrations [5]. The SHM of such structures is indeed of para-

mount importance for our interconnected communities. 

Health monitoring has to exploit sensor equipment and data measurements, through 

data analysis and decision-making strategies. The choice of an appropriate sensing tech-

nology and of the measurement of the structural response to different natural or man-

made excitation sources is critical to provide data sensitive to the structural state. The 

process of data analytics is often conducted through data cleaning, compression, and fu-

sion [6], data augmentation [7], data prediction [8], data normalization [9], and feature 

extraction [10]. Different machine learning algorithms within the realms of unsupervised 

learning [11,12] and supervised learning [13] can be adopted for decision-making about 

whether the bridge has suffered a damage or can still operate normally. 

Recently, the technology of remote sensing has opened a golden window to the SHM 

of bridge structures [14,15]. With this technology, it is possible to access e.g., synthetic 

aperture radar (SAR) images, and extract structural displacements at different spots of the 

structures without any sensor installation, and labor-intensive field measurements. De-

spite such important benefits, there are some limitations related to this technology. First, 

the products of spaceborne remote sensing can be claimed to be Big Data, requiring ad-

hoc analysis. In most cases, speckle noise in a SAR image is a major challenge for displace-

ment extraction. Second, unlike the contact-based sensing systems, it is not trivial to 
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collect structural responses hourly. Hence, small data is the other important challenge re-

lated to the SAR-based SHM. Third, it may result unnecessary to use feature extraction 

tools, like interferometric techniques, to obtain information in terms of local displace-

ments with remote sensing, particularly in view of recent progress of machine learning 

algorithms. All in all, the most appropriate solution to such challenges can be to leverage 

machine learning-aided prediction capabilities. 

A small dataset is one of the challenges of SHM via remote sensing, as a machine 

learner with insufficient data cannot operate properly. For the problem of data prediction, 

the same issue can affect the applicability. Since most of the predictive models are devel-

oped from regression techniques, the use of small datasets increases in fact the probability 

of underfitting or overfitting. The best solution in this case is to take advantage of parsi-

monious yet robust predictive models, featuring simple configurations but providing re-

liable and robust predictions without any concern related to the underfitting and overfit-

ting problems. 

From the aforementioned discussion, it stems that the main goal of this research is to 

propose a parsimonious and robust regression model to predict partial structural dis-

placements retrieved from a few SAR images. The proposed method is a coupling of a 

regression artificial neural network (RANN) featuring a fully connected architecture, and 

Bayesian hyperparameter optimization (BHO). The RANN undertakes the prediction of 

the structural response to temperature variability, while BHO tunes the hyperparameters 

of the RANN. To assess the effectiveness of the proposed model, partial displacement re-

sponses of a long-span bridge are adopted. Results show that the proposed RANN-BHO 

method is quite successful in predicting the bridge response, even in the presence of small 

training datasets. 

2. Supervised Artificial Neural Network for Regression 

2.1. Network Configuration 

A RANN is an ANN specifically tailored for regression problems. It is a feedforward, 

fully connected neural network showing the standard input layer, a number of hidden 

fully connected layers, and the output layer. The network input is defined as the predictor 

data. Each fully connected layer handles the input data by means of a weight matrix and 

a bias vector; an activation function (e.g., the rectified linear unit, hyperbolic tangent, sig-

moid function, and linear function) can provide nonlinear transformations of the infor-

mation/data, see e.g., [16–18]. A backpropagation algorithm is adopted to tune the weights 

of the RANN, managing a loss function (as a prediction error between the input and the 

output) to be minimized with the stochastic gradient descent algorithm. Finally, the pre-

dicted response is given as the network output. Error! Reference source not found. shows 

a graphical representation of the RANN, wherein N denotes the number of fully con-

nected (hidden) layers. 

 

Figure 1. Graphical sketch of the RANN. 

The strength of the RANN is the ability to learn both linear and nonlinear relation-

ships between the predictor and the response data, due to employing different activation 

functions, see e.g., Hagan et al. [19]. The main hyperparameters of the RANN are the 
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number N of hidden layers, and the number of neurons of each layer; these hyperparam-

eters must be determined before the learning stage.  

2.2. Model Tuning via Bayesian Hyperparameter Optimization 

Hyperparameter optimization in machine learning deals with the choice of the best 

values of key parameters of a given machine learning model, so that the highest overall 

performance on a validation set can be attained [20]. Although there are different ap-

proaches to hyperparameters tuning, Bayesian hyperparameter optimization (BHO) is the 

most useful in a case when reaching a reliable overall performance is challenging, like e.g., 

in the presence of small datasets to learn from. Bayesian optimization is an approach that 

uses Bayes theorem to find the minimum of an objective function. The BHO keeps track 

of past evaluation outputs and uses them to develop a probabilistic model, by mapping 

hyperparameters to a probability of a score on the objective function. For the problem of 

data prediction, the BHO is designed to minimize the following objective function: 

𝐹 = log(1 + 𝐸𝑀𝑆𝐸) (1) 

where 𝐸𝑀𝑆𝐸  denotes the cross-validation mean-squared-error (MSE) between observation 

and estimation; this is achieved iteratively. At each iteration, the objective function 𝐹 in 

Equation (1) yields a logarithmic transformed validation loss value computed for the re-

gression model, along with the relevant optimal set of hyperparameters. As mentioned, 

the BHO not only handle this function, but also incorporates a probability distribution 

model to be updated at each iteration. BHO thus defines an acquisition function and the 

next set of hyperparameters. Hence, it can be considered to deliver a posterior probability 

distribution model for each hyperparameter. The best hyperparameter values can be se-

lected after reaching a good match between real and predicted data. 

In relation to the proposed predictive model, it has been already reported that BHO 

makes attempts to tune two key hyperparameters of the RANN: the number N of the fully 

connected layers, and the number of neurons of each layer. Apart from hyperparameters, 

a machine learning model may rest upon other unknown elements, which are termed 

model parameters. The main difference between hyperparameters and model parameters 

is that the former should be determined before the learning stage, while the latter can be 

adjusted during the same [21]. For instance, the weight and bias of each neuron of the 

RANN represents its model parameters. 

3. Method Performance Evaluation for a Steel Arch Bridge 

The Lupu Bridge is a steel arch bridge crossing the Huangpu River in Shanghai, see 

Error! Reference source not found.. It has a total length of 750 m, comprising a main span 

of 550 m and two side spans of 100 m.Error! Reference source not found.b provides the 

elevation view of the Lupu bridge, as well as its main sizes. The girder in the side span is 

a closed steel box, with a width of 41 m and a height of 2.7 m [22].  
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Figure 2. (a) A picture of the Lupu Bridge, and (b) elevation view of the bridge with main dimen-

sions. 

A long-term SHM program of the bridge was carried out by Qin et al. [22] with the 

aid of the spaceborne remote sensing, to inspect the variability in the displacement re-

sponse of the bridge dome and main span. 55 SAR images from TerraSar-X were collected 

to extract the displacements of the mentioned bridge components. During the monitoring 

period, the air temperature was also recorded to incorporate seasonal and thermal effects 

in the SHM program. Error! Reference source not found. illustrates the collected displace-

ment and temperature data. From the regression viewpoint, the displacement and tem-

perature samples are the main dependent (response or output) and independent (predic-

tor or input) data, respectively. 

 

Figure 3. Dependent and independent data for prediction: (a) displacement of the dome, (b) dis-

placement of the main span, and (c) temperature. 

By dividing the dataset with a ratio 80:20, respectively referring to the training and 

test subsets, the total numbers of training and test samples turn out to be 44 and 11. For 

the learning process, the training samples are also subdivided on their own into the train-

ing and validation sets, leading to 35 and 9 samples to handle respectively. Using these 

datasets, the BHO is adopted to tune the number of layers and the corresponding neuron 

sizes; the outcome of the optimization procedure is collected in Error! Reference source 

not found..Error! Reference source not found. shows the good convergence rate of the 

trained RANNs adopted for the dome and main span of the bridge, as obtained with the 

minimization of the objective function 𝐹  after 30 iterations. Furthermore,Error! Refer-

ence source not found. depicts the results of displacement predictions obtained with these 

trained models at the same dome and main span locations. As it can be observed, target 

and predicted data points match well with each other. To also provide a quantitative eval-

uation of the agreement, in the figure it is reported that the proposed predictive model 

yields R-squared values are equal to 0.8509 and 0.9223 at the two locations. 



Eng. Proc. 2023, 56, x FOR PEER REVIEW 5 of 7 
 

 

 

Figure 4. Convergence rate of the RANNs via BHO: (a) dome, and (b) main span. 

 

Figure 5. Prediction of the displacement response by the proposed RANN-BHO method: (a) dome, 

and (b) main span. 

Table 1. Tuned hyperparameters of the RANNs via BHO. 

Element Number of Layers 
Neuron Sizes 

1st Layer 2nd Layer 3rd Layer 

Dome 2 3 2 – 

Span 3 2 2 3 

4. Conclusions 

This paper has discussed the issues linked to the health monitoring of bridges in case 

of limited/small datasets, like those typically collected with remote sensing systems. To 

address the limitations of small data for prediction, a parsimonious yet robust predictive 

model has been proposed by combining RANN and BHO. BHO has been exploited to tune 

the main hyperparameters of the RANN, that are the number of hidden layers and their 

neuron sizes. 

Displacements along with air temperature related to a long-span steel arch bridge, 

have been used to verify the capability and performance of the proposed method. The 

results have demonstrated that the RANN-BHO-based method is an effective and simple 

predictive tool, featuring reliable estimations in the presence of small datasets to be ex-

ploited for the prediction of the structural health. 
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