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Abstract: The ambient temperature is a critical factor affecting the deformation of long-span bridges, 
due to its seasonal fluctuations. Although there exist various sensor technologies and measurement 
techniques to extract the actual structural response in terms of the displacement field, this is a de-
manding task in long-term monitoring. To address this challenge, data prediction looks as the best 
solution. In this paper, the thermally-induced response of a long-span bridge is forecasted with a 
regression tree ensemble method in conjunction with Bayesian hyperparameter optimization, 
adopted to tune the proposed regressor. Results testify that the offered method is reliable when 
there is a linear correlation between the temperature and the induced structural deformation, hence 
in terms of the thermally-induced displacement field. 
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1. Introduction 
Ambient temperature affects the response of civil structures to the external 

excitations [1], especially long-span bridges [2]. The critical impact of this environmental 
factor is related to its seasonal variability [3], regardless of the type, size, and material the 
structures are made of [4,5]. Notably, temperature variability is an important challenge 
for long-term structural health monitoring (SHM). Seasonal temperature fluctuations in 
summer and winter profoundly affect the structural response and the physical properties, 
leading to changes to the structural characteristics. Several experimental and field 
monitoring studies demonstrated that varying temperature conditions may have a more 
significant effect on the structural behavior than operational loadings [6]. This is because 
spatial and temporal temperature variations cause thermal loads, unpredictable internal 
stresses and forces in elements, and also changes in the boundary conditions, particularly 
for large-scale bridges, all of which lead to damages such as cracks in concrete and 
yielding of steel elements. Therefore, it is essential to regularly monitor structures like 
long-span bridges under varying ambient temperature effects, to remove such effects [7–
9]. 

The routine and simple monitoring process usually consists in conducting field 
measurements. Accordingly, structures are equipped with sensors to measure structural 
and environmental data with accelerometers, strain gauges, thermocouples, 
anemometers, etc. Recently, the technology of spaceborne remote sensing has helped civil 
engineers to leverage remote sensors mounted on satellites (like e.g., Sentinel-1, TerraSar-
X, COSMO-SkyMed) to capture optical or synthetic aperture radar (SAR) images, and 
extract structural displacements. The great advantage of this technology is the lack of 
contact sensors, which represent a considerable cost of the SHM system and may be 
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broken in case of extreme environmental events (e.g., typhoons). Despite the development 
of new sensing technologies for data measurement, a field measurement process may 
show several limitations. First, it is not simple to perform a long-term field measurement 
program. Second, although the spaceborne remote sensing facilitates extracting structural 
displacement responses, the outcome of this technology (i.e., optical and SAR images) 
often has huge size (in the unit of GB) leading to limitations linked to memory storage. 
Third, spaceborne remote sensing cannot supply rich data/features as obtained with SHM 
via contact-based sensing. In most long-term SHM projects, the monitoring problem is 
based on small data [10]. However, it is difficult to provide such entire data stream from 
remote sensors. One of the most appropriate solutions to this challenge is to implement 
data forecasting or prediction. 

According to the concept of data forecasting, it suffices to define the main predictors 
(input or independent data) and relevant responses (output or dependent data). In health 
monitoring of civil structures, the environmental conditions (i.e., temperature, humidity, 
wind, etc.) are related to the predictors, while changes in the structures themselves pertain 
to the responses. Using such information, supervised regression modeling is the best 
approach to data forecasting [2,11,12]. 

The main objective of this paper is to propose a regression ensemble tree (RTE) in 
conjunction with the Bayesian hyperparameter optimization (BHO), called here RTE-BHO 
to forecast the thermally-induced responses of long-span bridges. In this method, BHO 
supports RTE to select the best ensemble learning algorithm between bagging and 
boosting strategies. To evaluate the performance of the supervised regressor, small sets of 
displacement responses and ambient temperature records related to a long-span bridge 
were considered. The displacement histories were extracted from 55 SAR images of 
TerraSar-X between 2009 and 2010. Results demonstrate that the proposed RTE-BHO 
provides an automated data forecasting approach, able to predict the displacement 
responses retrieved from the spaceborne remote sensing technology. 

2. Regression Tree Ensemble 
Ensemble learning is an advanced machine learning algorithms that can significantly 

improve the overall performance of any model. In particular, it has been an effective 
strategy for SHM [13]. For the problem of regression, the RTE method develops a 
supervised predictive model as a weighted combination of multiple regression trees. 
Indeed, the RTE benefits the concept of ensemble learning to enhance the decision tree 
regression that may suffer from high variance, bias, and overfitting. Therefore, multiple 
regression trees based on the concept of ensemble learning can be combined to make an 
ensemble of trees and improve the prediction performance. 

Bagging and boosting are two popular and tried-and-tested ensemble learning 
algorithms adopted in RTE. Bagging or bootstrap aggregating utilizes multiple separate 
sets from the original, randomly generated training data with replacement to train the 
different regression trees. Let B denotes the number of trees to generate B different 
bootstrapped training datasets. The predictions of B trees, defined as {ŷ1, …, ŷB}, can be 
computed and then averaged to reduce the variance with respect to a single regression 
tree. The averaging process in the bagging method is given by: 

𝑦ො஻௔௚ = 1𝐵 ෍ 𝑦ො௜஻
௜ୀଵ  (1) 

where ŷBag denotes the average prediction of all the regression trees. The boosting 
technique increases the number of trees B sequentially, so that each tree uses a modified 
version of the whole dataset accounting for information from the previously developed 
trees.  

The fundamental principle of the boosting technique is to increase the number of 
trees sequentially, wherein each tree uses a modified version of the whole dataset through 
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information from the previously developed tree. This technique somehow resembles the 
bagging method except that the trees are grown sequentially, which means that each tree 
is grown using information from previously developed trees. The boosting technique does 
not involve bootstrap sampling; instead, each tree is fit to a modified version of the 
original dataset. The boosting learning process improves the prediction performance of 
each tree from ŷ1 to ŷB by updating the weights of the training samples, without the 
bootstrap sampling. In this regard, the boosted model output ŷBoost is defined as follows: 

𝑦ො஻௢௢௦௧ = ෍ 𝜆𝑦ො௜஻
௜ୀଵ  (2) 

where λ is the shrinkage parameter (i.e., a constant value) that controls the rate of the 
boosting process for learning.  

3. Bayesian Hyperparameter Optimization 
In machine learning, a hyperparameter is an unknown element that affects the overall 

performance of a model [14]. Among the various hyperparameter optimization 
techniques, BHO is one of the most effective ones. This is because it can tune any type of 
unknown parameters based on Bayes’ theorem. In the forecasting problem by regression 
modeling, the fundamental principle of BHO is to minimize the following objective 
function, along with its hyperparameter(s), in a bounded domain: 𝐹 = logሺ1 + 𝐸ெௌாሻ (3) 

where 𝐸ெௌா  stands for the cross-validation mean-squared-error (MSE) between the 
observation (i.e., real data) and estimation (i.e., predicted data) values. The function 𝐹 
denotes a logarithmic transformed validation loss, computed for the regressor and 
hyperparameter values at each iteration. Using this function, BHO considers a probability 
distribution model for the objective function of interest and the model is then updated at 
each new evaluation/iteration. In the following, an acquisition function is defined to 
maximize and also determine the next values(s) of the hyperparameter(s) of the objective 
function. One can also incorporate a posterior probability distribution for each 
hyperparameter. If there is any error in the iterative process, one should take more 
iterations until reaching convergence or consider a stopping condition. By minimizing the 
objective function 𝐹 , the best hyperparameter set is that one leading to a good 
convergence (i.e., a minimum difference) between the observed and estimated data. 

Regarding RTE, BHO undertakes the tuning of some important elements, such as the 
type of ensemble learning algorithm, the minimum number of lead node, the maximum 
number of decision splits (branch nodes), and the shrinkage parameter in Equation (2). 

4. Case Study: The Lupu Bridge 
The Lupu Bridge is a steel arch bridge that crosses the Huangpu River in Shanghai, 

see Figure 1a. This structure features a total length of 750 m, due to a main span of 550 m 
and two side spans of 100 m. Figure 1b provides the side view of the bridge, along with 
its main dimensions and structural components. The girder in the side span is 
characterized by a closed steel box with a width of 41 m and the height of 2.7 m. The box-
girder was fixed with the arch ribs, columns, and end cross-beam of the side spans. More 
structural details can be found in Qin et al. [15]. 
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Figure 1. (a) The Lupu Bridge; (b) side view and main dimensions. 

4.1. Thermally-Induced Structural Responses 
Due to the sensitivity of the Lupu Bridge to geological and environmental conditions, 

a field measurement based on spaceborne remote sensing and limited SAR images was 
conducted to obtain the displacement responses of two critical components of the bridge 
in a long-term monitoring program [15]: the main span, and the dome. Accordingly, 55 
SAR images from TerraSar-X between 2009 and 2010 were analyzed to extract the 
displacement points of the mentioned components. During this field measurement, air 
temperature data were also recorded, to provide rich information for the prediction 
problem. Figure 2 shows the time histories of the displacements associated with the dome 
and the main span, along with the temperature data. 

 
Figure 2. Displacement responses of the Lupu Bridge (a) at the dome, and (b) the main span; (c) 
relevant temperature data. 

4.2. Forecasted Results 
The measured temperature and extracted displacement evolutions were collected to 

be arranged as the training and test datasets. 80% of the temperature and displacement 
samples were used to generate the training set, while the remaining 20% of the samples 
were considered as the test set. The number of the training and test points were therefore 
equal to 44 and 11, respectively. Using BHO with 50 sample iterations, Table 1 reports the 
main hyperparameters of the RTE models to forecast the displacement responses. 

Table 1. Bayesian hyperparameter optimization of the RTE model. 

Hyperparameter 
Bridge Element 

Dome Span 
Ensemble learning algorithm Bagging Bagging 

Number of leaves 5 4 
Number of decision nodes 49 34 

Using the trained RTE models, Figure 3 compares the predicted and real 
displacement samples, including those considered in the training process and those 
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related to the test set. As it can be observed, the predicted and real values are in good 
agreement with each other. Moreover, Figure 4 displays the regression plot by comparing 
the actual and predicted data: it can be seen that there are small deviations of all the data 
points from the straight line providing a perfect fit. To get additional insights, Table 2 
gathers the values of the R-squared metric relevant to the RTE-BHO method, in case of 
different training ratios. The regressors developed for the dome and span have large R-
squared values, close to one, when the training ratio is 80%. However, if the training rate 
is reduced, the R-squared values only slightly reduce. 

 
Figure 3. Measured and predicted displacements by the RTE model: (a) dome, and (b) main span. 

 
Figure 4. Predicted versus actual displacements, based on the RTE method: (a) dome, and (b) main 
span. 

Table 2. Performance evaluation of the RTE-BHO method, in terms of the R-squared measure under 
a varying training ratio. 

Bridge Element 
Training Ratios 

80% 50% 30% 
Dome 0.8625 0.8453 0.7513 
Span 0.9365 0.9121 0.8547 

5. Conclusions 
This paper has addressed the problem of forecasting structural displacements with 

remote sensing technology. The forecasting problem has been intended to evaluate the 
effect of ambient temperature on long-span bridges in long-term monitoring programs. A 
supervised regressor has been developed by combining a regression ensemble tree and 
Bayesian hyperparameter optimization. 

Using the displacement responses at the dome and main span of the Lupu Bridge, 
the results have shown that the supervised regressor succeeds in forecasting the response 
data with a high overall performance, even in the case of a small dataset to learn the main 
features of the said structural response. 
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