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Abstract: An accurate prediction of the structural response in the presence of limited training data 
still represents a big challenge if machine learning-based approaches are adopted. This paper inves-
tigates and compares two state-of-the-art kernelized supervised regressors to predict the structural 
response of a long-span bridge retrieved from spaceborne remote sensing technology. The kernel-
ized supervised procedure is either based on a support vector regression, or on a Gaussian process 
regression. A small set of displacement time histories and corresponding air temperature data are 
fed into the regressors, to predict the actual structural response. Results demonstrate that the pro-
posed regression techniques are reliable, even when only 30% of the training data are used at the 
learning stage. 
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1. Introduction 
Structural health monitoring (SHM) has brought a practical methodology for 

ensuring the safety and integrity of civil structures [1–4]. This methodology is based on 
sensor deployment over the structure to be monitored, data acquisition, modeling, feature 
extraction, and feature analysis. The modeling stage can be either physics- or data-based 
[5,6]. Sensors are obviously important to any SHM process, because the acquired data 
from the structures provide information on their behavior and current state. Recently, 
spaceborne remote sensing has become an emerging and practical technology for 
monitoring large-scale civil structures, by using synthetic aperture radar (SAR) images 
[7]. Despite some limitations such as speckle noise, low spectral and resolution 
information, SAR images have become important data to rely the SHM process on [8,9]. 
The main product of the remote sensing for SHM is the extraction of structural 
displacements from the said SAR images. 

Even if recent progress in SAR-based SHM using the aforementioned displacement 
responses can be exploited, especially for huge civil structures some limitations cause 
obstacles to fully take advantage of this methodology. First, as for any SHM program the 
in-situ/field measurements are not always trivial. In most cases, field testing and 
measurements entail high costs, low efficiency, impact on traffic, and damage to the 
structures. Although the use of non-contact-based sensors, particularly spaceborne 
remote sensing, significantly copes with the limitations of contact-based sensing and its 
difficulties regarding in-situ measurement, SAR images produce Big Data of huge sizes 
(in the unit of GB) leading to issues related to memory storage. Second, the displacement 
is a feature extracted from SAR images. This means that such information is not provided 
directly from sensor recordings, and feature extraction techniques (like interferometric 
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approaches) look therefore necessary. In some cases, this results into poor and unreliable 
displacement data. Third, spaceborne remote sensing cannot provide rich data/features as 
other contact-based sensing methods, which may be installed permanently. More 
precisely, in most practical and long-term SHM projects based on installed contact 
sensors, it is possible to supply large datasets measured hourly; however, it is difficult to 
provide such entire data from remote sensing. Fourth, it is probable that any in-situ/field 
measurement may contain missing data, which leads to incomplete information to SHM 
purposes. To address these limitations, the most appropriate solution is to predict the 
structural response based on measured excitation or input parameters. 

In machine learning, data prediction is a well-known problem. To this purpose, it is 
possible to exploit various regression models based on predictor (independent or input) 
and response (dependent or output) data. In relation to the SAR-based SHM strategy, the 
major challenge to face is that structural displacements extracted from the SAR images are 
limited. In other words, due to the size of such images, a few observations are often 
considered to extract displacement responses. In this case, the use of any regression model 
for small data may be problematic. The best solution is thus to leverage data expansion 
techniques. From the viewpoint of the regression modeling, support vector regression 
(SVR) and Gaussian process regression (GPR) are two supervised regressors developed 
from the concept of kernel trick that expand a low-dimensional feature space to a high-
dimensional one with different kernel function [10]. However, the performance of these 
techniques in the presence of small datasets, and the consideration of a limited training 
ratio have not been explored properly for SAR-based SHM. 

This paper mainly intends to compare the SVR and GPR methods for predicting the 
structural responses obtained from a few SAR images, under a tiny and unusual ratio of 
training data. For this goal, data related to the structural response of a long-span bridge 
have been considered along with ambient temperature recordings with contact-based 
sensors. The structural responses have been considered for some areas of the bridge, 
exploiting 29 SAR images only of Sentinel-A1 in a long-term monitoring scheme. 
Accordingly, the temperature and displacement samples are divided into training and test 
sets with the ratio of 30:70. The recorded ambient temperature stems as the major 
predictor datum, while the structural displacements are considered as the main response 
for prediction. Results demonstrate that SVR outperforms GPR. 

2. Supervised Regression Techniques 
2.1. Support Vector Regression 

The fundamental principle of SVR is to map the original training data to a higher-
dimensional space, and then apply an optimization approach to find a hyperplane that 
can separate the training data in the transformed space. This hyperplane resembles a 
function that can predict a target value within a tolerance margin, or a decision boundary 
based on the training data points [11]. Given the predictor data x = {x1, …, xn} and response 
data y = {y1, …, yn}, which in the present case respectively gather the temperature and 
displacement points, the general form of the SVR model can be expressed as 𝑦 = 𝐰்𝐱 +𝑏, where w denotes the weight vector and b is the bias. Based on this general form, SVR 
intends to exploit the training data to predict the response data, moving through the 
following steps: (i) separating the training data into support vectors; (ii) mapping the 
support vectors into high-dimensional space via a kernel function; and (iii) developing a 
regression model containing estimated parameters through an optimization process. 
Based on Mercer’s theorem, the mapping procedure is performed by using different 
kernel functions. The procedure aims at minimizing a convex function subject to 
constraints; for more details, readers are referred to [11]. 

To deal with the nonlinear regression problem, the low-dimensional parameter space 
needs to be mapped into the high-dimensional one by a kernel function ϕ(x), which 
computes inner product values of mapped points in the feature space stored in a matrix. 
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Therefore, the final SVR model based on any kernel function can be expressed as 𝑦 = 𝐰்𝛟ሺ𝐱ሻ + 𝑏. 

2.2. Gaussian Process Regression 
GPR is a supervised regression model that predicts data based on the development 

of a kernel-based probabilistic algorithm and the theory of Gaussian processes [12]. Given 
the predictor and response data x and y, GPR predicts a response point using new 
predictor data by introducing latent variables, L(x1), …, L(xn) from a GP, and an explicit 
basis function. For each i = 1, …, n, if L(xi) and xi conform to this process, the joint 
distribution of the random variables L(x1),…, L(xn) is Gaussian. If these variables are from 
a zero mean Gaussian process, one can derive the GPR model as 𝐡ሺ𝐱ሻ்𝐚 + 𝐋ሺ𝐱ሻ, where 
h(x) denotes a basis function that transforms the predictor data {x1,…,xn} into a new vector, 
and a is the set of the coefficients of this function. As the GPR model is based on the 
probability theory, 𝐡ሺ𝐱ሻ்𝐚 + 𝐋ሺ𝐱ሻ can be re-written as:  Prሺ𝐲|𝐋ሺ𝐱ሻ, 𝐱ሻ ∼ 𝑁ሺ𝐱|𝐡ሺ𝐱ሻ்𝐚 + 𝐠ሺ𝐱ሻ, 𝜎ଶሻ (1) 

where, 𝐠ሺ𝐱ሻ ∼ 𝐺𝑃൫0,𝛟ሺ𝐱ሻ൯ is equivalent to a zero-mean GP and ϕ(x) denotes the kernel 
function (matrix) of the predictor data. Once the GPR model has been developed via the 
training data, it can predict any new response by means of the conditional distribution in 
Equation (1). 

3. Application 
The Dashengguan Bridge is a long-span high-speed railway steel bridge, which 

crosses the Yangtze River in Nanjing, China [8]. The bridge features a large-span 
continuous steel arch truss with a length of 1615 m. This work focuses on the six main 
parts of the bridge, with a total length of 1272 m as shown in Figure 1. The arches consist 
of three truss planes above the deck. The main truss has a welded, monolithic joint. The 
members and gusset plates were welded together in the fabrication yard, and then 
transported to the site and spliced outside the joint with high-strength bolts.  

 
Figure 1. Side view and main dimensions of the Dashengguan Bridge. 

3.1. Predictor and Response Data 
In a long-term monitoring program between April 25, 2015 and August 5, 2016, 29 

SAR images from Sentinel-A1 were used to extract displacement responses in the unit of 
mm at some critical areas of the bridge, including piers 4–6 and 8–10, see Figure 1. Figure 
2 shows the mentioned structural responses at the six piers of the bridge, which were 
extracted with the persistent scatterer interferometry technique [8]. The ambient 
temperature was also recorded by contact-based sensors, and is shown in Figure 3. 
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Figure 2. Structural displacements of the Dashengguan Bridge from 29 SAR images of Sentinel-A1: 
(a–c) Piers 4–6, (d–f) Piers 8–10. 

 
Figure 3. Air temperature records. 

3.2. Prediction Results 
To predict the displacement responses, the predictor and response data are divided 

into the training and test sets. For the training process, a small ratio of 30% is considered 
so that the training data consist of 9 samples, including both the recorded temperature 
and the extracted displacement points. The remaining 20 samples are incorporated into 
the test dataset. The Bayesian hyperparameter optimization is adopted to tune the 
unknown elements of the SVR and GPR, especially the kernel function. On this basis, the 
linear and squared exponential kernel functions are selected for SVR and GPR, 
respectively, to map the limited training points into the high-dimensional feature space. 

The results of displacement response prediction via SVR and GPR are shown in 
Figure 4 and Figure 5, respectively. Indeed, these charts display the scatter plots of the 
predicted displacements versus their real values, as extracted from the SAR images. When 
the scatter points are close to the reported straight line to represent a perfect match 
between the two datasets, one can infer that the prediction process operates well. The 
comparison between Figure 4 and Figure 5 testifies that SVR outperforms GPR in 
predicting the displacement data in the case of a small training ratio. For further 
investigation, Table 1 compares the numerical outputs of the regression modeling based 
upon the R-squared (R2) and root-mean-square-error (RMSE) measures; a R-squared value 
close to one is indicative of a good prediction. In Table 1, one can observe that R2 and RMS 
values relevant to the SVR model are closer to one, and smaller than the corresponding 
values concerning the GPR model. Therefore, both the graphical and numerical 
assessments confirm a better performance of SVR, compared to GPR. 

(a) (b) (c)

(d)

04/25/2015

07/30/2015

08/23/2015

09/28/2015

10/22/2015

11/15/2015

12/09/2015

01/14/2016

02/19/2016

03/14/2016

04/07/2016

05/01/2016

05/25/2016

06/30/2016

08/05/2016
--150

--100

--50

0

50

100
(e) (f)

04/25/2015

07/30/2015

08/23/2015

09/28/2015

10/22/2015

11/15/2015

12/09/2015

01/14/2016

02/19/2016

03/14/2016

04/07/2016

05/01/2016

05/25/2016

06/30/2016

08/05/2016
0

5

10

15

20

25

30

35

40



Eng. Proc. 2023, 56, x FOR PEER REVIEW 5 of 7 
 

 

 
Figure 4. Predicted versus real displacements based on SVR: (a) Pier 4, (b) Pier 5, (c) Pier 6, (d) Pier 
8, (e) Pier 9, (f) Pier 10. 

 
Figure 5. Predicted versus real displacements based on GPR: (a) Pier 4, (b) Pier 5, (c) Pier 6, (d) Pier 
8, (e) Pier 9, (f) Pier 10. 

Table 1. Performance evaluation of the kernelized supervised regressor. 

Pier no. 
Metrics 

R2 RMSE R2 RMSE 
SVR GPR SVR GPR 

4 0.9732 0.8413 10.6044 25.8231 
5 0.9475 0.8231 12.3346 22.6547 
6 0.9210 0.7603 9.5984 16.7244 
8 0.9680 0.9632 6.1634 6.6125 
9 0.9875 0.8155 6.7403 25.9005 

10 0.9548 0.9701 14.1607 11.5007 
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4. Conclusions 
This paper has compared two kernelized supervised regressors, namely SVR and 

GPR, to predict the structural displacements extracted from a few SAR images obtained 
with a remote sensing technology, in the case of a small ratio of training data. The Bayesian 
hyperparameter optimization has also been applied to tune the unknown elements of the 
SVR and GPR models, especially their kernel functions. 

A limited number of displacement responses of a long-span steel bridge coupled with 
the relevant ambient temperature values have been considered, to evaluate the capability 
of the regressors. The results have demonstrated that SVR provides better prediction 
results than GPR, in the case of only a small training dataset used in the data analytics 
stage of the SHM strategy. 
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