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Abstract: Knowing the exact position of firefighters in a building during an indoor firefighting 
operation is critical to improving the efficiency and safety of firefighters. For the estimation of an 
individual’s position in indoor or Global Positioning System (GPS) denied environments Pedestrian 
Dead Reckoning (PDR) is commonly used. PDR tries to estimate the required position via sensors 
without external references, for example using accelerometers and gyroscopes. One of the most 
common techniques of PDR is step-detection. Applications like firefighting, however, also involve 
dynamic movements like crouching. Thus, the accuracy of a step-detection algorithm is reduced 
dramatically. Therefore, this paper presents a novel PDR algorithm that augments the conventional 
PDR technique with a tracking camera. The position estimates of a zero-crossing step-detection 
algorithm and the tracking camera estimates are fused via a Kalman filter. A system prototype, 
designed for algorithm validation, is presented. The experimental results confirm that enhancing 
the system with a secondary sensor leads to a substantial increase in the position estimation 
accuracy also for dynamic crouching maneuvers compared to conventional step-detection 
algorithms. 

Keywords: Pedestrian Dead Reckoning; Kalman filter; firefighting 
 

1. Introduction 
While safety standards in firefighting are continuously improving, indoor operations 

in burning buildings still present a dangerous task for firefighters. At least 240 injuries and 
10 deaths involving firefighters conducting firefighting operations in buildings were 
reported in the United States in 2022 [2]. To improve safety while performing such a 
dangerous task, knowing the exact position of firefighters in indoor environments can 
shorten rescue time of injured personnel or help firefighters avoiding dangerous 
situations. Such technologies can not only improve safety of the involved firefighters, but 
can provide real-time data for so-called internet of emergency services applications, 
which aims to improve emergency response and disaster management [6]. To determine 
the position of a person in indoor or GPS-denied environments, a technique called 
Pedestrian Dead Reckoning (PDR) is used. It relies on sensors such as accelerometers, 
gyroscopes, and magnetometers integrated into wearable devices, smartphones or 
smartwatches. By continuously tracking a pedestrian’s step counts, stride length, and 
heading changes, PDR algorithms can calculate their relative displacement from a known 
starting point. Other means of PDR include simultaneous locating and mapping [10], 
magnetic field mapping [15] or magnetic triangulation [1]. 

For an application in firefighting operations, many of the aforementioned PDR 
methods are not feasible. While radio tracking [5] or magnetic mapping [15] produce 
accurate results in indoor environments, they are technologies that have to be installed 
before use. It may be possible to achieve this in large buildings, however it would not be 
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feasible to do for every building in an area where a fire might occur. For tracking 
firefighters in any indoor environment, a stand-alone, body-worn device is required. 
Stand-alone PDR systems often rely on a form of step-detection [8]. Algorithms based on 
step-detection can estimate an accurate position mainly during walking. Movements 
occurring in a firefighting application, however, also include more dynamic activities like 
crouching. Those movements are hard to detect by standard step-detection algorithms. 
Thus, a secondary sensor measuring position or velocity is necessary to improve accuracy 
in those scenarios. A common sensor chosen for this is a Light Detection and Ranging 
(LIDAR) sensor [15]. While this approach can yield good results in smoke-free 
environments, tests show that distance readings of LIDAR systems are heavily influenced 
by smoke particles and therefore are not usable in a firefighting environment. 

Due to these shortcomings in PDR for firefighting application, in this paper a novel 
approach for enhanced PDR is presented. The step-detection algorithm is extended with 
a stereo tracking camera as a secondary sensor. Despite Tracking cameras being readily 
available and producing accurate tracking results, they are hardly used in Pedestrian 
Dead Reckoning applications [2]. This tracking camera can visually determine velocity 
and position relative to a starting point, even is smoky scenarios. The camera providing 
position and velocity is combined with a step-detection algorithm providing position 
information. The gathered data is fused using a Kalman filter to robustly estimate the 
firefighter’s position. While in Section 2 the fundamentals of the step-detection and the 
model for the Kalman filter is presented, in Section 3 the overall PDR system setup 
including software and hardware components is described. Finally, Section 4 discusses 
the results of a verification campaign in which position data from the proposed algorithm 
is compared to data generated by step-detection only. 

2. Sensor-Data Processing Algorithms 
The PDR relies on an advanced sensor data fusion algorithm combining position data 

estimated by a step-detection algorithm and the velocity and position data estimates of a 
secondary sensor. 

2.1. Step-Length Estimation 
Step-detection describes the process of detecting and counting a persons steps by 

measuring and analysing the accelerations of a body-worn inertial measurement unit 
(IMU). The most common ways of step-detection utilize the vertical acceleration signal 
and analyse the signal using peak-, zero-crossing or flat zone detection. hose simple but 
accurate methods are considered to be sufficient for this initial study. A zero-crossing 
detection approach is chosen since flat zone detection only works for foot mounted 
sensors and peak-detection accuracy is dependent on a persons walking speed [14]. Zero-
crossing detection analyses the characteristic shape of the vertical acceleration of a torso 
mounted sensor [21]. To improve detection accuracy, the high-frequency content of the 
signal is filtered out using a low-pass filter. A straightforward implementation of a first 
order low pass filter is the so-called exponentially weighted moving average  𝑦(𝑘Δ்) =  𝛼(𝑘Δ்) + (1 − 𝛼 = 𝑦൫(𝑘 − 1)Δ்൯, (1)

where 𝑢(𝑘Δ்) is the raw signal at time step 𝑘Δ், and 𝑦(𝑘Δ்) and 𝑦൫(𝑘 − 1)Δ்൯ is the 
filtered signal of the current and the last time step, respectively [12]. The smoothing factor 𝛼 lies between 0 and 1 and can be calculated as  𝜶 = 𝟐𝝅𝚫𝑻𝒇𝒄𝟐𝝅𝚫𝑻𝒇𝒄 + 𝟏, (2)

with Δ் being the sampling time and 𝑓 being the required cut-off frequency. For a step 
to be counted as complete, the filtered, vertical acceleration signal 𝑎௭ has to cross the zero 
line twice, once rising, i.e., 
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(𝒂𝒛 >  𝟎) ⋀ (𝒂𝒛 <  𝟎) (3)

and afterwards once falling, i.e., (𝒂𝒛 <  𝟎) ⋀ (𝒂𝒛 >  𝟎). (4)

Only if these two conditions are registered in the algorithm, a step can be finally 
counted. 

Once a step is registered as complete, the step length has to be added to the current 
estimated position in the direction of movement. To estimate the step-length d a method 
using the relation between hip acceleration and the length of a step following [16] is 
applied, i.e., 𝒅 =  ඥ𝒂𝐦𝐚𝐱 − 𝒂𝐦𝐢𝐧    𝟒  𝒄 (5)

In Equation (5) 𝑎୫ୟ୶  the maximum measured acceleration and 𝑎୫୧୬  the minimal 
acceleration both measured during the last step and 𝑐 is a constant for unit conversion. 
This method produces accurate estimates with low computational effort compared to 
other algorithms [11,14,22]. 

2.2. Sensor-Data Fusion 
Sensor-data fusion describes the process of using multiple sensor outputs to estimate 

the state of a system. A common approach for sensor fusion complementary filtering, 
which combines high frequency data of one sensor, that fast but prone to drift, with low 
frequency data from another sensor, which stabilized the output signal. 

In this paper we use the more advanced method of a Kalman filtering. The idea of 
the Kalman filter is to use an optimal recursive algorithm for sensor-data fusion. The filter 
operates in two steps: the prediction step, where the system’s state is predicted using a 
prediction model, i.e., a mathematical model of the underlying dynamics; and the update 
step, where on the one hand the measurements are used to correct the predicted state via 
the Kalman gain, and on the other hand the Kalman gain itself is updated based on the 
measurements. This gain balances the model’s predictions and the actual measurements 
[5]. The process continually refines the state estimate as new data becomes available, 
making it robust against noise and capable of handling real-time applications. The 
required prediction model is described by the non-linear function 𝑥൫(𝑘 + 1)Δ்൯ =𝑓൫𝑥(𝑘Δ்), 𝑢(𝑘Δ்)൯. As underlying model in this paper we define for each of the three-
coordinate axis the function  

𝑓(𝑥, 𝑢) = ൭ 𝑢𝑢Δ்𝑥ଵΔ் + 𝑢Δଶ் ൱, (6)

with the input u to the model being the measured acceleration a by the inertial 
measurement unit and the state vector 𝑥 =  ሾ𝑥ଵ, 𝑥ଶ, 𝑥ଷሿ. The update step of the Kalman 
filtering process, uses the velocity measured by the tracking camera and the position 
estimate by the tracking camera and the step-detection to correct the filter estimate. Based 
on this model the Kalman filter provides estimates of the position and the velocity in the 
corresponding axis. Note that the dependency of the signals on time, i.e., on 𝑘Δ் , is 
omitted in Equation (6) for readability reasons. By changing the covariance matrices of the 
Kalman filter, the accuracy of the predictions and measurement updates is tuned [17]. 

3. Enhanced Pedestrian Dead Reckoning System 
The enhanced PDR makes use of a robust step-detection-scheme with which the 

position of the firefighter is estimated. Additionally, a tracking camera serves as secondary 
sensor providing position and speed measurement to back up the step-detection based 
position. Finally, all available signals are fused together via a Kalman filter providing the 
position and velocity of the firefighter. 
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3.1. Robust Step-Length Estimation and Secondary Sensor Setup 
As basis, step-detection herein uses the zero-crossing technique as described in 

Section 2.1. The vertical acceleration signal used for the step-detection is filtered with a 
low-pass filter to remove the undesired, high frequency parts of the signal that occur 
during movement. Since the frequency range of normal human walking is in the range of 
1 Hz to 5 Hz, the bandwidth of the low-pass filter is specified at fc = 10 Hz in Equation (1) 
ensuring an adequate roll-off at higher frequencies. Figure 1 shows a comparison of the 
raw data with the filtered acceleration data. Clearly, sharp peaks and noise are filtered 
out. To also consider dynamic movements of firefighters as crouching, the step-detection 
algorithm’s robustness is improved via an additional threshold-crossing detection: To 
initiate the counting process, the acceleration signal has to pass the negative threshold at 𝜏 − 2 m/s2. Afterwards, a step is counted as valid, only if between the detection of two 
subsequent zero-crossings, a rise above the positive threshold 𝜏௫ 2 m/s2 is registered. 
If after the initialization via the negative threshold the described sequence is not 
completed in a specified time the step-detection logic is reset and no step is counted. After 
a step is detected, the length of the step is added to the last known position in the direction 
of movement that is determined by the heading angle measured by the IMU. The step-
length is estimated via Equation (5). It is assumed, that due to the limited field of view 
and restriction of movement by gear during an indoor operation, firefighters move in the 
direction their body is aligned. Since the IMU is mounted on the air tank of the firefighter, 
the orientation of the IMU equals the direction of movement. To describe the position in 
a global reference frame, the coordinate origin of the global reference frame is defined 
when the device is initialized, where the initial heading defines the x-axis. As the 
secondary sensor a stereo tracking camera is used to provide additional position and 
velocity information. Such a device has two calibrated cameras that are placed with a 
distance to each other and are horizontally aligned. By measuring the displacement of a 
tracked object between the two cameras, the distance to the object can be calculated. Doing 
this for multiple objects and repeating this process every frame, the position and average 
velocity is provided. 

 
Figure 1. Raw and filtered vertical acceleration during walking, with the illustration of a single step. 

3.2. Sensor Fusion Algorithm 
Based on the model in Equation (6), the available acceleration signal by the IMU, and 

position and velocity information the Kalman filter estimates the firefighter’s velocity and 
position. The position data from the step-detection and the tracking-camera, however, 
needs to be fused before entering the filter, as discrete confidence levels of the camera are 
available, which cannot be handled by the Kalman filter. Thus, the fusion of the two 
signals is performed via a simple weighting scheme using discrete weights. The tracking 
camera provides four different confidence level indicators, from the highest confidence to 
the lowest. For the step-detection it is assumed that the estimated position accuracy by the 
step-detection algorithm deteriorates the longer no step is fully registered. To limit the 
weighting possibilities to a discrete set also for the step-detection, three discrete conditions 
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are used to reflect the accuracy after the last detection based on the time passed since the 
last detection event: if 𝑡ୱ୲ୣ୮ < 0.5 s best accuracy, if 0.5 s ≤ 𝑡ୱ୲ୣ୮ < 3 s medium accuracy, 
and if 𝑡ୱ୲ୣ୮ ≥ 3 s worst accuracy is assumed. The resulting weighting scheme, motivated 
by the work in [3], includes twelve cases. If the quality of both markers is bad, the step-
detection gets highly favored, since it provides stable results during walking, even in zero 
visibility environments. If the tracking confidence is high, the camera measurements get 
slightly favored. This is because in theory the tracking cameras results will more accurate 
since it produces continuous position updates and can track the position regardless of the 
type of movement. The combination of the measurements is performed before they are 
used in the Kalman Filter. With a weighting gain 𝑤 the weighted measurement input for 
the x- and y-position is calculated via 𝑥(𝑘Δ்)𝑦(𝑘Δ்)൨ =  ቈ𝑤(𝑘Δ்)𝑥ୱ୲ୣ୮(𝑘Δ்) + ൫1 − 𝑤(𝑘Δ்)൯ 𝑥ୡୟ୫ୣ୰ୟ(𝑘Δ்)𝑤(𝑘Δ்)𝑦ୱ୲ୣ୮(𝑘Δ்) + ൫1 − 𝑤(𝑘Δ்)൯ 𝑦ୡୟ୫ୣ୰ୟ(𝑘Δ்), (7)

where 𝑥ୱ୲ୣ୮  and 𝑦ୱ୲ୣ୮  are the position estimates produced by the step-detection and 𝑥ୡୟ୫ୣ୰ୟ and 𝑦ୡୟ୫ୣ୰ୟ being the position estimate from the tracking camera. Since the step-
detection cannot estimate the z-position, only the measurement from the tracking camera 
is used, therefore no weighting is performed. 

3.3. Sensor Hardware Assembly 
The IMU used is the Bosch Sensortech BNO055 MEMS absolute orientation sensor. 

The device measures acceleration in three axes and provides absolute heading data by 
measuring the earth’s magnetic field and fusing gyroscope and Magnetometer data. The 
secondary sensor is a RealSense T265 stereo tracking camera. Its main advantage is the on-
chip, online data processing. Thus, no other means of interpreting the data is necessary 
and the velocity and position data are directly available for the sensor fusion algorithm 
presented herein. Note that by using parts of the infrared spectrum the camera also can 
produce accurate tracking results in environments with bad lighting.  

For validation of the system, a wearable sensor assembly is designed. Both sensors 
are mounted on a backplate of a self-contained breathing apparatus. This design is chosen 
to imitate an application in firefighting settings, where the sensors are placed on the 
pressurized air tank. For this, a 3D-printed spacer is designed to mount the sensors at the 
right distance. Weight is added to represent the air tank. Camera and IMU are protected 
from damage by an enclosure. Figure 2 shows the developed experimental setup. 

 
Figure 2. Sensor assembly mounted on the firefighter equipment. 

4. Results 
For an initial validation of the sensor setup and the algorithms, tests on predefined 

paths are performed. While these tests do not fully mimic the conditions that occur during 
firefighting operations, they allow, however, the initial feasibility assessment of the setup. 
Additional experiments in real-life applications are planned in further studies. First, to 
validate the performance during regular walking scenarios, a 33 m long path is tested. The 
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right diagram in Figure 3 shows the estimated position of the different algorithms 
compared to the true path. While at the beginning of the test all three algorithms deliver 
accurate results, the step-detection deviates strongly after the first heading change. The 
proposed sensor fusion is able to stay close to the real path and deliver the best results 
most of the time. The tracking camera alone, however, delivers the best result in the 
middle of the experiments. This is due to the fact, that here the step-detection shows a big 
error dragging also the sensor fusion algorithm away from the real path. 

  

Figure 3. Experimental results comparing step-detection only, tracking camera only, and the 
proposed sensor data fusion to the true path for crouching (left) and walking (right). 

In the second validation experiment, dynamic crouching, frequently employed in 
firefighting, has been tested. The test path, illustrated in the left diagram of Figure 3, 
covers a total length of 12 m and includes four 90° turns. The starting- and endpoint are 
identical and 10 test runs are performed. Clearly, the step-detection alone performs the 
worst in this scenario, because simply no steps are performed during the movement. The 
mean values over 10 runs, as listed in Table 1, demonstrate significant improvements in 
tracking accuracy, with at least a five-fold enhancement at the four corner points (P1 to 
P4) when utilizing the proposed algorithm compared to relying solely on step-detection. 
To simulate potential obstructions of the tracking camera caused by dirt or heavy smoke, 
the tracking confidence is artificially reduced so that the step-detection is highly favored. 
In these scenarios, the mean deviation at each control point is degraded but lies still within 
the acceptable range of 1 m.  

Table 1. Mean deviation from the true path at four corners of the path. 

Estimation Method P1 P2 P3 P4 
Step-Detection 1.60 m 2.45 m 2.44 m 1.80 m 
Sensordata Fusion 0.28 m 0.42 m 0.27 m 0.32 m 
Low tracking confidence S.F 0.66 m 0.68 m 0.76 m 0.54 m 
Tracking Camera only 0.27 m 0.43 m 0.24 m 0.29 m 

The data in Table 1 also indicates that the tracking camera alone performs similar 
well to the sensor fusion algorithm. In these results, however, the tracking camera 
confidence was set to its highest possible level. To ensure reliable results, even in scenarios 
where the camera confidence is degraded, it is essential to incorporate data from step-
detection for crouching scenarios. This is crucial because the camera may produce highly 
inaccurate data in those scenarios. In German firefighting tactics crouching movement is 
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predominantly used in low visibility environments (where the camera confidence will be 
degraded). Thus, the assumption herein is, that in those low visibility situations a reliable 
step-detection is still possible due to the use of the crouching method. This assumption 
will be validated in real-life applications in future studies. 

5. Conclusion 
An enhanced Pedestrian Dead Reckoning method for firefighting applications has 

been presented. The step-detection has been successfully upgraded with a secondary 
sensor to improve position estimates in different moving scenarios. The required sensor 
fusion algorithm has been successfully validated in an experimental validation campaign 
showing promising results for the usage of the developed prototype system. To further 
validate the proposed system, real-world trials with professional firefighters using the 
equipment will be performed. Such application-near experiments will provide insight into 
the limitations of the system in a real-fire scenario and provide feedback to further 
improve the system setup. It will allow to define the specific conditions which require 
improvement of the sensor-data fusion algorithm accuracy. 

Author Contributions: T.A.: methodology, visualization, analysis, synthesis, testing, validation and 
original draft preparation. D.O.: Supervision, scientific review and proofreading. All authors have 
read and agreed to the published version of the manuscript. 
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