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Abstract: Manual Inspection of concrete structures, such as tall buildings, bridges, and huge infra-
structures can be time-consuming, and costly, and damage assessment is a crucial task that requires 
close-range inspection of all surfaces. The proposed system uses computer vision model to identify 
various types of damages on these structures. The computer vision model and was trained on a 
large dataset of drone footage, which was annotated manually to ensure accuracy. The model was 
then tested on new data, and the results showed that it could accurately detect and identify struc-
tural damage on concrete structures with 94% accuracy. The system is much faster and more effi-
cient than manual inspection, reducing the time and cost required for damage assessment. The pro-
posed system has the potential to revolutionize the way we perform damage assessment on concrete 
structures. It can help to preserve and protect these valuable assets by enabling early detection of 
damage and facilitating timely repairs. 
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1. Introduction 
Manual inspection of concrete structures, such as tall buildings, bridges, and huge 

infrastructures, is a time-consuming and risky process for human employees. Drones with 
sensor camera nodes have showed potential in gathering close-range footage, but the 
problem is rapidly analyzing enormous volumes of data to detect and diagnose structural 
deterioration. This study deals with these challenges by presenting an Internet of Things 
(IoT), computer vision and deep learning-based automated solution. The primary issue 
addressed in this research is the requirement for a more efficient and reliable way of iden-
tifying structural damage on Concrete Structures. 

The traditional manual inspection technique is time-consuming and expensive, mak-
ing timely repairs and maintenance impossible. As a result, an automated solution is nec-
essary to speed up the damage assessment process while reducing dangers to human per-
sonnel. The proposed system focuses on detecting various types of damage, such as 
cracks, Alkali-Silica Reaction (ASR), concrete degradation, and others, on Concrete Struc-
tures using drone-captured video footage [1,2]. The system’s scope includes developing a 
Convolutional Neural Network (CNN) architecture tailored to this specific task and im-
plementing a seamless process for automatically obtaining video data from drones. 

The primary objective of this work is to create and implement an automated damage 
detection system capable of identifying structural damage on Concrete Structures in an 
efficient and accurate manner. The technology intends to expedite the inspection process 
by utilizing IoT, computer vision and deep learning techniques, enabling proactive 
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maintenance and preservation activities. The novelty of the proposed system is a custom-
designed CNN architecture that is optimized for detecting damage on Concrete Structures 
and a system architecture based on IoT to automatically capture data, perform analysis 
and reporting. The performance of the proposed automated damage detection system was 
evaluated using a diverse dataset of drone-captured video footage containing various 
types of damage on Concrete Structures. The CNN architecture demonstrated impressive 
results, achieving an accuracy of 94% in correctly identifying different types of structural 
damage. 

The approach involves capturing close-range footage of the infrastructure with 
drones and processing the footage using a computer vision model to identify and classify 
damage. The proposed method can provide an efficient and cost-effective way to detect 
damage to cultural heritage sites and help preserve these important historical structures 
for future generations. The working of the system is shown in Figure 1. 

 
Figure 1. System Architecture. 

2. Related Work 
The comprehensive analysis [3] explores into the critical issue of damage detection 

in civil engineering, emphasizing the transformational potential of Computer Vision and 
Deep Learning algorithms. The research [4] presents a Deep Convolutional Neural Net-
work-based Damage Locating (DCNN-DL) approach for steel frame inspection that out-
performs existing techniques with 99.3% accuracy. The approach uses the DenseNet ar-
chitecture to properly identify and detect damaged regions, providing a fast real-time so-
lution for visual damage evaluation in civil structures. The research in [5] investigates the 
use of computer vision algorithms in conjunction with remote cameras and unmanned 
aerial vehicles (UAVs) for non-contact civil infrastructure evaluation. The study in [6] pre-
sents a unique structural identification framework for bridge health monitoring that 
makes use of computer vision-based measures. It employs a novel damage indicator, a 
displacement unit influence surface, and successfully identifies and localizes simulated 
damage on a large-scale bridge model, demonstrating its use in structural health evalua-
tion. The thorough study in [7] addresses gaps in the current literature on computer vi-
sion-based crack diagnosis for civil infrastructure by providing a complete evaluation of 
qualitative and quantitative methodology, including deep learning-based approaches. 

Despite extensive research into image-based damage identification and quantifica-
tion, this technology is still in its early phases, with limitations and gaps for further inves-
tigation. Despite efforts to improve the reliability of image-based approaches, it is realized 
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that attaining total automation in damage assessment and categorization remains a sub-
stantial task. 

3. System Design 
The proposed system involves the use of a drone to capture image data, which is then 

fed to an object detection model to identify different types of structural damage in cultural 
heritage sites. In this section, we provide a detailed methodology for building and deploy-
ing the system, which involves collecting images of cracks in buildings, labeling and train-
ing the model using, and deploying the model using a Python script. 

3.1. Dataset Collection 
The first step in building the system is to collect images of cracks in buildings. These 

images are taken using a drone, which captures high-resolution images of the building’s 
surface. The images are then annotated with labels indicating the type of damage using 
the Roboflow platform. The labeling process involves drawing bounding boxes around 
the damaged area and assigning them a label indicating the type of damage, such as 
cracks, ASR, or concrete degradation. 

Different images of cracks were collected. The images are sized to 800 × 800 pixels 
which is a standard transformation applied before training. The dataset is then split up 
the images into a train, test, and validate split: 
• 2527 images used for training. 
• 2149 images used for validation. 
• 279 images used for testing. 

With the use of the Roboflow platform’s rectangular “bounding box” tool, each pic-
ture in the dataset is labelled for object detection. The labelling for the various photos is 
shown in the following figure: 

 
Figure 2. Annotated images in the dataset. Bounding box for cracks detection. 

3.2. Model Training 
The annotated data is then used to train the object detection model. The model is 

trained using a deep learning algorithm, YOLO. 
The trained model is deployed using a Python script, which receives a live camera 

stream and runs the object detection model to detect the cracks. The Python script uses 
the Model API to query the hosted version of the model and return the results. The API 
provides a simple interface for sending images or video to the model and receiving the 
output in a standardized format. 
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Figure 3. Methodology of the system. 

The selection of hardware components plays a crucial role in this research as they 
enable the deployment and testing of the computer vision model. Specifically, a drone and 
a camera module are utilized to facilitate the implementation of the model. The figure 
below illustrates the setup of the drone used in this research. The setup of the drone, as 
depicted in the figure, showcases the integration of the camera module and other neces-
sary components to ensure seamless data capture and transmission. 

 
Figure 4. Drone with WiFi Camera Module. 

The system incorporates several essential hardware components for its operation. It 
utilizes a Quadcopter Drone Kit, WiFi Camera Module, a Roboflow account, and a Python 
development environment. 

4. Results & Discussion 
In this section, the results of experiments using different object detection models for 

detecting structural damage in cultural heritage sites has been discussed. The three differ-
ent models, YOLOv8, YOLOv7, and YOLOv5, are used to evaluate the performance of the 
system on a test dataset of annotated images for the field of cultural heritage monitoring 
and protection. 

Performance of the YOLOv8, YOLOv7, and YOLOv5 models has been evaluated on 
the test dataset of annotated images. The models were trained using the dataset from Ro-
boflow platform. As transfer learning is used in this research, the following tables shows 
the pre-trained YOLO models used and training settings. 
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Table 1. YOLO pre-trained models. 

Model Weights Layers Parameters Gradients GFLOPs 
YOLOv8 yolov8m.pt 295 25,856,899 25,856,883 79.1 
YOLOv7 Yolov7.pt 407 37,194,710 37,194,710 105.1 
YOLOv5 Yolov5m.pt 291 20,871,318 20,871,318 48.2 

Table 2. Training Settings. 

Model Image Size Learning Rate Batch Size Epochs 
YOLOv8 800 0.01 16 200 
YOLOv7 640 0.01 16 200 
YOLOv5 800 0.01 16 200 

The evaluation metrics used were precision, recall, and F1 score. The equation from 
1 to 4 are used to evaluate the performance of machine learning models and measure its 
accuracy, precision, recall, F1 score, and latency: 

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + TN) (3)

F1Score = (2 × Precision × Recall)/(Precision + Recall) (4)

The following Table 3 shows the results of the evaluation for each model. 

Table 3. Performance matrix of different YOLO models. 

Model Precision Recall F1 Score 
YOLOv8 0.91 0.85 0.89 
YOLOv7 0.85 0.81 0.86 
YOLOv5 0.71 0.75 0.82 

As shown in Table 1, the YOLOv8 model achieved the highest performance in terms 
of precision, recall, and F1 score. The model achieved a precision of 0.93, recall of 0.85, and 
F1 score of 0.89. The YOLOv7 model also performed well with a precision of 0.92, recall 
of 0.81, and F1 score of 0.86. The YOLOv5 model achieved a precision of 0.90, recall of 
0.75, and F1 score of 0.82. 

The following table that compares the mAP scores for each class across the YOLO8, 
YOLO7, and YOLO5 models: 

Table 4. Class wise accuracy of different YOLO models. 

Class YOLO8 mAP Score YOLO7 mAP Score YOLO5 mAP Score 
Plastic shrinkage cracks 0.89 0.8 0.66 

Crazing & Crusting Cracks 0.93 0.85 0.73 
Settling cracks 0.9 0.84 0.7 

Expansion cracks 0.91 0.83 0.72 
Heaving cracks 0.78 0.85 0.65 

Overloading cracks 0.92 0.83 0.68 
Corrosion of Reinforcement 0.93 0.86 0.71 

As shown in the table, the YOLO8 model has the highest mAP score for all classes 
except for “Heaving cracks”, where the YOLO7 model performs slightly better. The 
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YOLO7 model also shows good performance for “Crazing & Crusting Cracks”, “Settling 
cracks”, and “Corrosion of Reinforcement”. The YOLO5 model generally shows lower 
mAP scores for all classes compared to the other two models, but still performs relatively 
well for “Crazing & Crusting Cracks” and “Corrosion of Reinforcement”. The following 
table compares the inferencing time for all three model. 

Table 5. Comparison accuracy and speed of YOLO models. 

Model mAP Score Inference Time (ms) 
YOLO8 0.91 25 
YOLO7 0.85 32 
YOLO5 0.71 18 

As shown in the table, the YOLO8 model has the highest mAP score and a relatively 
fast inference time, making it the best overall option for detecting structural damages. The 
YOLO7 model has a moderate mAP score but a slightly slower inference time compared 
to the YOLO8 model. The YOLO5 model has the fastest inference time but the lowest mAP 
score, making it a suitable option for applications where speed is a priority over accuracy. 

 
Figure 5. Inferencing result showing detection of cracks on wall. 

5. Conclusions 
This research demonstrates the effectiveness of using drone-captured imagery and 

computer vision techniques for the inspection of structural damage in heritage buildings. 
By employing object detection models such as YOLO8, YOLO7, and YOLO5, various types 
of damage, including plastic shrinkage cracks, crazing & crusting cracks, settling cracks, 
expansion cracks, heaving cracks, overloading cracks, and corrosion of reinforcement has 
been successfully identified. The evaluation of the models has shown promising results, 
with high mAP scores across different classes. 

This research has highlighted the potential of leveraging computer vision and drone 
technology in damage assessment, providing a safer, cost-effective, and efficient alterna-
tive to traditional manual inspections. By automating the detection process, we reduce the 
need for manual evaluation, which can be time-consuming and prone to human error. The 
integration of these technologies allows for comprehensive and detailed inspections, fa-
cilitating early detection and timely intervention to mitigate further damage to concrete 
structures. 
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