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Abstract: Robot vision, enabled by Deep Learning breakthroughs, is gaining momentum in the in-
dustry 4.0 digitization process. The present investigation describes a robotic grasp detection appli-
cation that makes use of a two-finger gripper and an RGB-D camera linked to a collaborative robot. 
The visual recognition system, which is integrated with edge computing units, conducts image 
recognition for faulty items as well as calculates the position of the robot arm. Identifying deformi-
ties in object photos, training and testing the images with a modified version of the You Look Only 
Once (YOLO) method and establishing defect borders are all part of the process. Signals are subse-
quently sent to the robotic manipulator to remove the faulty components. The adopted technique 
used in this system is trained on custom data and has demonstrated high accuracy and low latency 
performance as it reached a detection accuracy of 96% with 96.6 of correct grasp accuracy. 
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1. Introduction 
The introduction should briefly place the study in a broad context and define the 

purpose of the work and its significance. Industry 4.0, also known as the Fourth Industrial 
Revolution, is a conceptual framework that is redefining the way industries operate, man-
ufacture, and interact with the global economy. It emerges as a response to the growing 
need for greater efficiency, flexibility, and sustainability in manufacturing. Basically, In-
dustry 4.0 means the integration of cyber-physical systems, the Internet of Things (IoT), 
Cloud Computing (CC) and Artificial Intelligence (AI) into the fabric of industrial opera-
tions [1]. The impact of this transformation is spreading throughout the manufacturing 
sector, impacting many aspects of production. It fosters a dynamic, connected ecosystem 
where machines, devices, and processes communicate seamlessly, enabling real-time data 
analysis and decision-making [2]. The tangible outcomes of Industry 4.0 include increased 
productivity, reduced production costs, improved product quality, and reduced time to 
market. Additionally, manufacturers will be able to respond more quickly to market fluc-
tuations and customer demands, redefining the competitive landscape. Furthermore, in 
industrial production, the quality of manufactured things is critical to achieving client 
satisfaction. As a result, the procedure of quality control over created components should 
be followed before they reach their final destinations on the market. The procedure should 
begin on the production lines to allow for early detection of defects and deficiencies, uti-
lizing emerging vision assessment technology to further improve the production rhythm 
with quality satisfaction. Vision sensors are widely utilized to address such concerns 
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nowadays; however, inspection quality still must be improved [3]. To that aim, we are 
combining deep learning with created sensing cameras to create a monitoring application 
that enables early detection of manufactured objects on the manufacturing line using 
newly developed methodologies. Many works have been interested in adopting AI in in-
dustrial vision applications. The work [4] provides a methodology to recognize the class 
of an object while estimating its 6D pose through RGB-D data. Specifically, the proposed 
model adopts a global approach, first recognizing an object and the region of interest 
(ROI) from RGB images. The pose of the feature is then estimated using the relative depth 
information. Several works have focused on adopting robotic arms to induce many facili-
ties in different applications. For instance, authors in [5] have proposed a robotic grasping 
system for automatically sorting garbage based on machine vision in complex back-
grounds. To achieve the accurate grabbing of the target object, they adopted a deep learn-
ing scheme interested in the Region Proposal Generation and the VGG-16 model for object 
recognition and pose estimation. The machine vision system sends the information of the 
geometric center coordinates and the angle of the long side of the target object to the ma-
nipulator which completes the classification and grabbing of the target object.  

The vision methods were adopted also for welding industrial applications. Vision-
aided robotic welding has been applied in the industrial field for decades for the proce-
dures of vision-aided robotic welding. Various methods in vision sensor calibration and 
hand-eye calibration have been illustrated. For example, the authors in [6] have presented 
a simple and robust hand-eye calibration strategy that requires minimal user interaction 
and makes use of a single planar calibration artifact. A simulation approach is used to 
further investigate and optimize the impact of robot position on the calibration process, 
and the resulting optimal robot positions are then experimentally validated for a real ro-
bot-mounted laser line sensor. Using the proposed optimum method, a semi-automatic 
calibration process, which requires only four manually scanned lines, is defined, and ex-
perimentally demonstrated.  

On the other side, robots have known an important evolution to deal with applica-
tions of fruit and vegetable harvesting. Using different end-effectors, acceptable results 
have been reached for apples, tomatoes, sweet peppers, and cucumbers [7]. However, the 
performances of the used final effectors (harvesting speed, success rate, costs, etc.)  com-
pared with the performances of human operators have shown less efficiency than human 
operators in the harvesting processes [8]. Authors in [9] have combined an advanced RGB-
D camera and DL policies with an arm robot for the assembly of mobile phone items. This 
system exploits a modified version of the YOLO (You Look Only Once) scheme to detect 
arbitrarily the pieces in industrial working space. To make the UR5 robot plan and execute 
its movement intelligently without any human operator training, the authors in [10], used 
a stereo vision camera and DL Faster-RCNN for object classification and recognition. A 
bench of investigations has been devoted to enhancing industrial manufacturing quality 
and efficiency relying on vision inspection and emerging DL methods [11]. T.P. Nguyen 
et al. have proposed a smart industrial vision inspecting system based on CNN to detect 
product defects like blow holes chipping, and cracks [12].  

An approach based on learning eye-hand coordination for robotic grasping from mo-
nocular images was proposed in [13], to learn hand-eye coordination for grasping. A large 
CNN model was trained to predict the probability of the gripper movement which re-
sulted in successful grasps. Another autonomous rock stacking method dedicated to con-
struction in an indoor environment using an arm robot was investigated in [14]. This 
method employs gradient descent with random initial orientation to detect randomly 
placed objects in a stacking scene. Therefore, in every industrial manufacturing, ensuring 
excellent quality of manufactured commodities is essential. Early detection of product 
flaws is critical in quality control in manufacturing to better meet client needs. As a result, 
we examined in this work the performance of YOLOv5 for our custom data to defect in-
spection. Then the system is associated with a UR5 robot arm related to an RGB-D camera 
application. 
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The remainder of this paper is structured as follows. In Section II, we summarize the 
proposed system application. Then, the YOLOv5 algorithm is described in section III. The 
used data set description and annotation are depicted in section IV. The performance as-
sessment metrics are discussed in section V. We comment on and discuss the obtained 
results in section VI. Finally, we provide the conclusion in Section VII. 

2. The Proposed System Architecture 
This section provides an overview of the overall application system, as depicted in 

Figure 1. The intelligent grasping system comprises three principal components: a robotic 
arm equipped with an integrated two-finger gripper for item manipulation, an RGB-D 
camera affixed to the arm for data acquisition, and an industrial conveyor belt for the 
transportation of manufactured items. The central element of this developed application 
is the collaborative UR5 robot. Due to its inherent capabilities, this robot serves as an asset 
for assisting human operators in assembly or inspection tasks. It possesses a 6-degree-of-
freedom (6-DOF) configuration, accompanied by a control box and a user-friendly pro-
gramming interface tailored for light assembly duties and automated workbench scenar-
ios. Additionally, it is equipped with a two-finger gripper capable of handling objects 
weighing up to 5 kg, featuring a total pivotal motion range of 360 degrees. The RGB-D 
camera in this context fulfills a dual purpose. RGB images are utilized as data inputs, sub-
ject to processing within the processing units, aimed at feature extraction and classifica-
tion of regions of interest (ROIs) for the detection of any defective areas. Simultaneously, 
the depth component, utilizing grayscale annotations, serves to estimate pose points for 
coordinating the 6D arm robot’s position. On the depth image, the X, Y, and Z coordinates 
are delineated on the corresponding side of the ROI. Depth information is derived from 
RGB images, enhancing pose estimation capabilities. To optimize system efficiency and 
practicality, we place a significant emphasis on decentralizing processing units, relocating 
the processing tasks to Edge units to enhance the localization and recognition of moni-
tored data. Specifically, the proposed YOLOv5 model is designed to facilitate real-time 
data processing at the Edge unit, thereby improving the system’s overall performance. 

 
Figure 1. The proposed system architecture. 

3. You Look Only Once Algorithm 
YOLOv5 [15] is an object detection model built on CNN. In a single forward pass, the 

YOLOv5 model takes an image as input and outputs the bounding boxes and class prob-
abilities for all objects detected in the image. YOLOv5 has several improvements over pre-
vious versions, including a smaller model size, faster inference speed, and improved ac-
curacy. It employs an innovative architecture that combines a CSP (Cross Stage Partial) 
backbone with an SPP (Spatial Pyramid Pooling) head, as well as other optimization tech-
niques like multi-scale training and hyper-parameter optimization. YOLOv5 has achieved 



Eng. Proc. 2023, 56, x FOR PEER REVIEW 4 of 11 
 

 

cutting-edge performance on several object detection benchmarks, including COCO and 
Open Images, and is widely used in industry and academia for a variety of computer vi-
sion applications. Figure 2 illustrates the YOLOv5 architecture’s four basic components: 
the input, the backbone, the neck, and the output. The input block primarily contains data 
pre-processing, such as mosaic data augmentation and adaptive image filling. YOLOv5 
integrates adaptive anchor structure calculation on the input to adapt to different datasets, 
making it possible to instantaneously set the initial anchor frame size whenever the da-
taset changes.  

 
Figure 2. Yolov5 basic architecture. 

The backbone network primarily employs a CSP and an SPP to retrieve feature maps 
of varying sizes from the input image via multiple convolution and pooling. The Bottle-
neck CSP structure serves to lower computation and increase inference speed, whereas 
the SPP structure realizes feature extraction from multiple scales for the same feature map 
and can generate three-scale feature maps, which improves detection accuracy. 

The neck network employs the FPN and PAN pyramid topologies. The FPN structure 
communicates contextual information characteristics from top to bottom feature maps. At 
the same time, the PAN structure transmits strong localization features from lower to 
higher feature maps. The above two structures collaborate to boost detection capabilities 
by fortifying features gathered from distinct network levels in Backbone fusion. Finally, 
the head output is primarily used as a final detection step to predict targets of various 
sizes on feature maps. 

4. Data-Set Collection and Annotation 
4.1. Data Set 

To investigate the performance of the YOLOv5 model for our application, we col-
lected a custom dataset comprising both defective and non-defective coils. This dataset 
was categorized into two distinct classes. Seventy percent of the data was allocated for 
training, while the remaining 30% was designated for testing. To be precise, the dataset 
comprises a total of approximately 1294 images, encompassing both “OK” and “Non-OK” 
pieces. These images were acquired using an RGB camera, capturing the object under 
study, primarily a metal part, from various angles. Additionally, the influence of lighting 
conditions on image quality and object characteristics was considered. We conducted im-
age captures under five different lighting setups: one from the top and four from different 
positions, each focusing on centralizing the object. To accommodate the input require-
ments of the deep learning model, we adjusted the image size during the training process. 
It’s important to note that, to mimic real-world conveyor applications, the distance be-
tween the camera and the pieces varied along the vertical axis in the captured images. For 
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the dataset generation, we classified the data into two classes: non-defective coils and de-
fective ones. The definition of an ideal piece for production involves a green spool with 12 
yellow coils. Consequently, any deviation from these specifications is categorized as a de-
fective piece. Defective pieces are identified if they contain either more or fewer than 12 
coils, or if the coils and spools exhibit different colors. Our simulation and testing proce-
dures commenced with the training of the network, initially using a learning rate of 0.001 
for 100 epochs. Subsequently, we continued training for an additional 40 epochs with a 
reduced learning rate of 0.0001. In Figure 3, we present sample images of faulty coils (Non-
Ok) and non-defective coils (Ok) from our training and test data set used in our simula-
tion. These images serve to highlight the uniqueness and distinct characteristics of each 
piece within our data set. 

 
Figure 3. Training batches for defective and non-defective pieces. 

4.2. Machine Learning Metric Measurements 
During the YOLOv5 algorithm evaluation process, we put as mean measure accu-

racy; the detection model’s evaluation indicators are precision (P), recall (R), and F1 score. 
True positives (TP), False positives (FP), True Negatives (TN), and False Negatives (FN) 
are also discrimination values (FN). The predicted results are compared to the actual la-
bels for evaluation purposes. If the model’s output is a correct prediction of a positive 
class, it is referred to as TP, and if it is a correct prediction of a negative class, it is referred 
to as TN. While false positive refers to the incorrect prediction of a positive class, false 
negative refers to the incorrect prediction of a negative class. On the other hand, accuracy 
is a performance criterion that shows the ratio of correct predictions to the total number 
of occurrences. Measures are also evaluated using precision and recall rates. Precision is 
the ratio of TP predictions to total positive predictions, and recall rate is the ratio of TP 
predictions to the sum of true positive and false negative predictions. F1 score is another 
measure used to report results that show the harmonic mean of recall rate and precision. 

4.3. Robot Kinematics and Successful Grasp Accuracy 
Time to detection is the amount of time needed to identify an object in an input image 

and create a plan for where to place or capture it. Given the temporal and substantive 
issues of the system, a real-time response must be given within the allotted time limits.  
In order to extract features and classify the images captured by the RGB-D camera, the 
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employed YOLOv5 algorithm is performed on a computer that functions as an Edge Com-
puting center. Rapid processing speed and high accuracy are two critical features of our 
system, so the model meeting these needs is selected as the final scheme.  

The processing and robot grasping time are very important for our application as 
they accelerate the overall task. To measure the total required time for each cycle we cal-
culate the time needed for the RGB-D camera to take the picture, the processing time on 
the edge unit, and the robot movement when required. Therefore, the total need time for 
each detection cycle is: 𝑇௧௢௧௔௟  = 𝑇௣௥௢௦ + 𝑇௖௔௠௘௥௔ + 𝑇௎ோହ + 𝑇௣௢௦௘ 

where 𝑇௧௢௧௔௟ , 𝑇௣௥௢௦ , 𝑇௖௔௠௘௥௔ , 𝑇௎ோହ  and 𝑇௣௢௦௘  are the time duration for processing, the 
time need for RGB-D camera to take the picture of the piece, the required time for the UR5 
to move and take the piece from the conveyor and the time needed from the camera to 
estimate the pose of the piece. If the piece after processing is detected non-defective the 
time required for both 𝑇௎ோହ and 𝑇௣௢௦௘ is null. It is to be noted that the time of the robot’s 
movement is adjustable and can be set as desired.  

We have selected YOLOv5 for our concrete application using the UR5 robot after as-
sessing its accuracy and simulation time. We employ a computer that acts as an interface 
for Edge Computing. The UR5 controlling box is linked to a platform that incorporates 
the YOLOv5 concept. We utilize an intermediary tool that is Python-programmed to con-
trol the movement of the UR5 robot. The system operates as shown in Figure 4. After the 
conveyor is turned on, the components under study move until a sensor mounted on the 
conveyor detects them. The sensor then signals the conveyor to stop, and the camera snaps 
an image, which is then sent to processing central to apply the YOLOv5. There are two 
ways the inspected piece could be defective or not when the processing runs out. When a 
piece is defective, the system signals the UR5 robot to move, pick it up, and place it in a 
designated spot. If not, the conveyor receives a signal to move and prepares to receive a 
new piece, at which point the cycle is repeated. 

 
Figure 4. Robot inspection system flowchart. 

5. Results and Discussions 
The experimental tests and training were carried out on the Google Colab platform. 

Different comparable datasets were utilized in this work for different power inductor 
parts with varied faults. Suitable sample size in varied faulty and non-defect components 
ensured the flexibility and dependability of the training results, as well as enhanced defect 
detection accuracy. 
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5.1. YOLOv5 Defect Detection Accuracy 
Figure 5 illustrates how to evaluate the YOLOv5 data by utilizing bounding boxes to 

identify identified items, their class labels, confidence scores, and locations inside the im-
age. It also evaluates the algorithm’s performance using performance measures, which is 
essential for assessing the accuracy and reliability of the algorithm. 

 
Figure 5. Yolov5 performance over epochs. 

The term train box loss shown in Figure 5 typically refers to the loss function associ-
ated with the bounding box predictions during the training of an object detection model 
YOLOv5. This loss function is crucial in guiding the model to learn how to accurately 
predict the locations of objects within an image. As shown during training the value de-
creases with increasing the number of epochs which means that the model is learning to 
predict bounding box coordinates accurately and assign appropriate confidence scores. 
Generally, when the model’s predictions align closely with the ground truth annotations 
in the training data, the box loss decreases. Typically, the phrase Train obj loss refers to 
the object loss that occurs during the training of an object detection model. This loss func-
tion is crucial in helping the model identify the proper items in the image. Classification 
loss and objectness loss are two of this function’s main components. As is apparent, this 
function decrements with epochs, which is in line with the training goal. By reducing this 
loss, the model is better able to categorize objects inside its bounding boxes. The object 
loss minimizes as the model’s predictions get closer to the ground truth class labels and 
objectness ratings in the training data. 

In addition, the mAP score in the same Figure 5 provides a summary of the model’s 
overall performance in terms of object detection accuracy, considering all the classes or 
categories of objects in our custom dataset. As shown the metric/mAP reaches high scores 
near 1 at an IoU of 0.5 which indicates better object detection performance. That means 
also that the model is accurate in localizing and identifying objects with at least a 50% 
overlap with the ground truth. 

Figure 6 presents the confusion matrix which is especially useful for understanding 
how well the model performs in terms of true positives, false positives, true negatives, 
and false negatives. Figure 7 depicts the F1 versus confidence performance of the defective 
and non-defective data set. Typically shows how the F1 score, a standard assessment met-
ric for object identification, evolves as confidence levels are changed. This sort of graph 
gives useful information on the trade-off between accuracy and recall in an object detec-
tion model at various confidence levels. It enables us to make informed decisions regard-
ing the trade-off between accuracy and recall maximizing the performance of your object 
detection model for your unique job or application. As illustrated, the optimal F1 score is 
obtained with a confidence level of 0.415. 
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Figure 6. Confusion matrix performance. 

 
Figure 7. F1 performance versus confidence. 

Figure 8 shows the curve performance changes of precision versus confidence. As 
shown, the curve typically starts high and increases until it reaches 1 at the confidence 
0.883. Besides, Figure 9 provides insight into how well YOLOv5 balances the trade-off 
between precision and recall across different confidence thresholds. In YOLOv5, as in 
many object detection models, precision represents the accuracy of positive predictions, 
and recall measures the model’s ability to detect all the true positive objects. 
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Figure 8. Precision versus confidence curve performance. 

 
Figure 9. Precision recall curve performance. 

Figure 10 depicts how the model’s recall rate increases at various confidence levels. 
It illustrates the trade-off between recall and accuracy. As illustrated the model becomes 
more selective in accepting predictions as the confidence threshold increases (going from 
left to right on the curve). This increases accuracy (fewer false positives) but decreases 
recall (more false negatives). 

 
Figure 10. Recall confidence curve performance. 

5.2. Robot Grasp and Delay Accuracy 
The statistical findings of the practical assessment of the suggested fault identifica-

tion application based on the YOLOv5 algorithm are shown in Table 1. The assessment 
was conducted using five distinct scenario situations, with the supervised item category 
on the conveyor changed each time, and the procedure repeated 100 times for each sce-
nario. In the first scenario, we were utilizing a non-defective component to conduct the 
investigation. In addition to this, we have given several defective items with names rang-
ing from defect type 1 to defect type 4 in the same condition. We have selected a distinct 
defect type for every single case. Meanwhile, it should be mentioned that each time we 
conducted the experiment, we tried to modify the piece’s position, the robot arm’s posi-
tion, and the brightness of the lighting. It should be mentioned that every time we run the 
experience, we attempt to adjust the item’s location, the robot arm’s position, and the il-
lumination from various corners that surround the piece. The table illustrates that the ro-
bot is 100% accurate in identifying the non-defective item out of 100 distinct experiences. 
The defect type 2 produced the same results, as it achieved an accuracy of 100%. In the 
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case of defect type 1, the robot misidentified two pieces because it did not recognize them 
well. In those tries, the defective parts were detected as non-defective, yielding a 98% 
proper grip accuracy for that experience. In the case of defect type 3, 95% of the proper 
detection accuracy was achieved despite 5 incorrect tries. We attempted to increase the 
complexity of the last scenario, defect type 4, by adding the hardest scenario possible to 
the system. Therefore, out of 100 attempts, 10 incorrect recognitions were made, yielding 
90% accuracy in the grasp. In summary, the system’s total accuracy for each of the five 
scenarios that were tested for over 100 repetitions was 96.6% grasp success accuracy. This 
can be explained by the significant accuracy of the YOLOv5 algorithm that has been uti-
lized to identify and categorize the pieces, as well as the accurate performance of the 
RGBD camera that is used to determine the exact location of the piece on the conveyor. 

Table 1. Concret grasp evaluation accuracy on UR robot. 

Scenario Average Time  𝑻𝒕𝒐𝒕𝒂𝒍 [s] Correct Grasp Incorrect Grasp  Correct Grasp Accuracy  
Non-defect 35.12 100 0 100% 

Defect Type 1 72.25 98 2 98% 
Defect Type 2 71.07 100 0 100% 
Defect Type 3 58.60 95 5 95% 
Defect Type 4 80.32 90 10 90% 

6. Conclusions 
In industrial areas, AI algorithms are being adopted for various reasons, like enhanc-

ing and faster productivity and quality. In this paper, we are interested in investigating 
the performance and accuracy of the YOLOv5 algorithm in detecting defective features 
on a specific piece. The process relies on different conditions, like if the number of coil 
circles fits the required by the production charge requirement. In addition, even if the 
spills and the color is as defined in the desired piece. Furthermore, the distance between 
the coil circles may cause a problem for the dedicated application. Therefore, this is also 
considered by our system. In general, the power inductance pieces are of different shapes 
and forms, each one is specifically dedicated to a given application. Thus, considering this 
issue, is mandatory to make the process of production more rapid and intelligent relying 
on the effectiveness of the emerged AI algorithms. The use of YOLOv5 in our proposed 
industrial system has shown high performance in both accuracy and latency, which is 
nowadays required to improve the rate of production and quality. The YOLOv5 has 
reached an accuracy of 96% on our custom data and the correct grasp accuracy for studied 
scenarios reached an average of 96.6%. 
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