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Abstract: This paper focuses on the development and validation of an automatic learning system 
for the classification of tactile data in form of vibro-tactile (accelerometer) and audio (microphone) 
data for texture recognition. A novel combination features including the standard deviation, the 
mean, the absolute median of the deviation, the energy that characterizes the power of the signal, a 
measure which reflects the perceptual properties of the human system associated with each sensory 
modality, and the Fourier characteristics extracted from signals, along with principal component 
analysis, is shown to obtain the best results. Several machine learning models are compared in an 
attempt to identify the best compromise between the number of features, the classification perfor-
mance and the computation time. Longer sampling periods (2 s. vs. 1 s) provide more information 
for classification, leading to higher performance (average of 3.59%) but also augment the evaluation 
time by an average of 29.48% over all features and models. For the selected dataset, the XGBRF 
model was identified to represent overall the best compromise between performance and computa-
tion time for the proposed novel combination of features over all material types with an F-score of 
0.91 and a computation time of 4.69 ms, while kNN represents the next best option (1% improve-
ment in performance at the cost of 2.13 ms increase in time with respect to XGBRF). 
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1. Introduction 
The tactile perception of material properties is a difficult task, but also of great im-

portance for the skillful manipulation of objects in fields such as robotics, virtual reality 
and augmented reality. Given the diversity of material properties, integrated tactile per-
ception systems require efficient extraction and classification of features from data col-
lected by tactile sensors. There are several publications on the topic of texture recognition 
in the literature. Characteristics of material textures can be retrieved using vision-based, 
tactile-based or sound-based data. Most publications rely uniquely on images to identify 
textures in various domains [1], while others are using sensor data collected by various 
tactile technologies (i.e., Microelectromechanical Magnetic, Angular Rate, and Gravity–
MARG-systems, pressure sensors, accelerometers, microphone, etc.) while the surface of 
the sensor enters in contact with a probed textured surface. Other publications capitalize 
on combinations of various tactile sensory sources [2–4]. Most publications are the em-
ploying feature extraction techniques [5] to identify the most relevant data to focus on 
prior to applying machine learning solutions to classify or recognize textures or textured 
materials. In tactile sensing, known feature extraction techniques include principal com-
ponent analysis, PCA [4,6], frequency signatures [7], and the Fast Fourier Transform (FFT) 
[3,8], both for sound and vibro-tactile data. Some researchers are focusing mostly on real-
time processing [3,4], and tend to choose less complex machine learning solutions (such 
as the k-nearest neighbors, KNN [3,7,8], 2-layer multilayer perceptron MLP [3,4], or SVM 
[3,6]). Others make use of convolutional neural network architectures [8] that do not 
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require the extraction of features, as this process is embedded in their architecture. How-
ever, they come at additional computational cost due to their increased complexity. 

This paper focuses on the development and validation of an automatic learning sys-
tem for the classification of tactile data in form of vibro-tactile (accelerometer) and audio 
(microphone) data for texture recognition. We aim to identify the right balance between 
classification accuracy and compact, fast solutions, with potential for real-time perfor-
mance. We propose a novel combination of features for this purpose. In order to reduce 
the dimensionality of the tactile dataset and identify the most compact models, we apply 
PCA as well as a process of selection of features based on their importance. Several ma-
chine learning models are compared in an attempt to identify the best compromise be-
tween the number of features, the classification performance and the computation time. 
We also demonstrate that the choice of the sampling length from the tactile signals is an 
important aspect that has a significant impact on classification performance. 

2. Materials and Methods 
2.1. Dataset for Texture Classification 

The VibTac-12 dataset used in this paper is created by Kursun and Patooghy [9]. It is 
based on a vibro-tactile stimulator system to generate controlled vibrations on textured 
materials (i.e., sandpapers of various grits, Velcro strips with various thicknesses, 
aluminum foil, and rubber bands of various stickiness) and an embedded system to record 
tactile data. Two sensors, a microphone and an accelerometer attached to a probe capture 
the audio and vibro-tactile signals, as the probe rubs against the surface of textured mate-
rials. The interested reader is invited to consult reference [3] for details on the 
experimental setup and the data collection process. In this paper, we employ the two 
available tactile data sources in the dataset, namely sound recordings and data collected 
by the accelerometer that measures the changes in acceleration and orientation of the 
probe in contact with the texture surface along three axes. It is important to state that we 
are not making use of the data processing sequence that the authors of [3] used, we only 
use their raw data. Our focus is to identify a set of powerful features that allow us to 
accurately clasify these data in the shortest time possible. 

2.2. Proposed Solution for Texture Classification from Sound and Vibro-Tactile Data 
Figure 1 illustrates the proposed solution for texture classification from sound and 

vibro-tactile data. Input data consists of sound data contained in the Sdf.csv file from the 
VibTac-12 dataset [9] and of accelerometer data, and contained in the Xdf, Ydf and Zdf 
files, respectively. This data goes through a pre-processing stage in order to normalize it, 
eliminate outliers, extract and select features in order to transform it into a usable format 
for classification. Texture class names are encoded with numeric identifiers. 

 
Figure 1. Proposed approach for texture classification. 
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To study the impact of each source (type) of data, of the chosen features and of the 
length of the sampling period on the performance of texture recognition we create several 
datasets. We name them in Figure 1 to clearly identify their data source, features and 
lengths. It is important to mention that creating these different dataset is only for easing 
their interpretation. They correspond in fact to the feature extraction process in machine 
learning that does not require the creation of separate datasets. Our solution is imple-
mented in Python. We make use of several open-access libraries, including Librosa [10], a 
library for audio signal processing, Scikit-learn for the implementation of the machine 
learning algorithms and the Eli5 library [11] to identify feature importance. 

2.3. Data Processing 
2.3.1. Data Transformation 

For each texture, 20 s of multimodal recordings are available. Therefore, each line of 
the Xdf, Ydf, Zdf files respectively, contains 4000 samples (20 s × 200 Hz sampling rate) 
and each line of the Sdf file contains 160,000 samples (20 s × 8 kHz sampling rate). To 
reduce the computational load and in order to create our datasets, we sampled, without 
replacement, 100 random samples from the raw data sequences, and thus each data set 
contains a total of 1200 records. A unique multimodal tactile dataset (SXYZ) containing 
sound data (S) and accelerometer (XYZ) data is thus created for testing. 

2.3.2. Feature Extraction 
We extracted from the created tactile dataset commonly used features in time series 

analysis, including the following 10 features: (1) MEAN, representing the mean; (2) stand-
ard deviation (STD), representing the dispersion of values around the mean; (3) median 
absolute deviation (MAD); (4) RMSE, the energy characterizing the power of the signal; 
(5) CHROMA: a representation of the musical characteristics related to the tonality and 
harmony of an audio signal; (6) SPECTRAL_CENTROID: a measure of the position of the 
center of gravity of the spectral energy distribution of a signal, calculated as the weighted 
average of the frequencies in the signal power spectrum, where the weights are given by 
the spectral magnitude at each frequency; (7) SPECTRAL_BANDWIDTH: a measure of 
the spread of spectral energy distribution in a signal, i.e., the frequency range of a signal; 
(8) SPECTRAL_ROLLOFF: a feature representing the frequency below which a given per-
centage of the signal’s total spectral energy is concentrated; (9) PERCEPTUAL: a feature 
reflecting the perceptual properties of the human system associated with each sensory 
modality useful to characterize the quality or perceptual properties of a signal; and (10) 
the zero crossing rate (ZCR) that measures the frequency at which a signal changes polar-
ity. We also extracted four features obtained by applying the Fast Fourier Transform (FFT) 
to the S, X, Y, and Z signals. The two resulting datasets are named SMMRP (10 features) 
and FFT (4 features) in Figure 1. These features are extracted from the sound and vibrotac-
tile signals for 1 s and for 2 s sampling periods. 

2.3.3. Feature Selection 
Feature selection is a key data preparation step aiming to reduce the number of fea-

tures to be included in modeling, by selecting the most relevant features for classification. 
It can help determine if there are features that are less useful, and thus could be potentially 
removed to reduce the model complexity. Using a random forest algorithm, we identified 
in the 10 feature-SMMRP dataset (Figure 2a) that the features STD, MEAN, MAD, RMSE 
and PERCEPTUAL (Figure 2b) are those that contribute the most to predictions. As such, 
we chose to continue our work with these 5 features (denoted SMMRP in the rest of the 
paper and SMMRP (5 features) in Figure 1) along with the four FFT features. However, 
we noticed that some of these features are correlated. To address this issue, as well as to 
further reduce the complexity of the dataset, we used PCA on these features (_PCA da-
tasets in Figure 1). As shown in Figure 1, in all the cases we have chosen the first 3 



Eng. Proc. 2023, 56, x FOR PEER REVIEW 4 of 7 
 

 

principal components that capture roughly 95% of the total variance when we only use 
the SMMRP features, roughly 97% for the FFT features and 100% when all features are 
used together (SMMRPFFT) for a sampling period of 2 s. 

  
(a) (b) 

Figure 2. (a) Sample of data; and (b) feature importance in the dataset using SMMRP features. 

Figure 3 shows the data dispersion for the various texture classes using PCA. One 
can notice that, for all datasets–SMMRP (Figure 3a), FFT (Figure 3b) and their combination 
SMMRPFFT (Figure 3c), certain classes are easily separable (distinguished), for example 
“aluminum_film”, in light red, or “fabric-3”, in purple, while others, like “fabric-1” in dark 
blue and “toy_tire_rubber” in dark red overlap, as do “fabric-2” in dark green and “mo-
quette-1” in dark orange. These latter classes will therefore be more difficult to classify 
correctly, regardless of the classifier used and of the features selected. Once can also notice 
that the separability is improved when the combination of features (SMRRPFFT) is used, 
in Figure 3c. 

  
 

(a) (b) (c) 

Figure 3. Principal Component Analysis for (a) SMMRP; (b) FFT; and (c) SMMRPFFT features (Note: 
the three axes of each figure represent the first 3 PCA components). 

2.4. Data Classification 
Available data is split in training (80%) and testing (20%) sets and the F-Score is used 

as a performance measure along with the computation time (in ms). For classification, we 
chose a series of classifiers based on the nature of the data, their use in the literature and 
their proven performance across various domains. These include Gaussian Naive Bayes 
(NB) classification, decision trees (Tree), random forest (RForest)-consisting of 1000 deci-
sion trees, support vector machines (SVM), the K-nearest-neighbors (KNN) algorithm, lo-
gistic regression (LG), neural networks (NN), a 2-layer MLP [12], XGBOOST (XGB) [13] 
and the Extreme Gradient Boosting with Random Forest (XGBRF). 

3. Results 
To evaluate the performance of our solution, we performed various tests with the 

chosen algorithms, mostly with default parameters and for the various combinations of 
features. In the first place, we studied the impact of the sampling period on the results. 
Table 1 shows that for all algorithms and combinations of features the performance in 
terms of F-Score is higher for a 2 s sampling (by 3.7%), but comes at the price of an in-
creased evaluation time by an average of 29.48% (6.2 ms) for all features and algorithms 
tested. We continued the remainder of tests with a sampling period of 2 s. In an attempt 
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to identify the best combination of features, we compared the F-score and the evaluation 
time for all the chosen algorithms when using three features for all datasets (after PCA). 
While the fact that we use a only 3 features leads to slight decrease in performance (aver-
age of 1.66% over all algorithms) with respect to using the 5 most important features, i.e., 
SMMRP (5 features), it also saves on average 41.5% of time (or 15 ms), and thus represents 
a good compromise between the complexity of the task reflected by the number of fea-
tures, the classification performance and the computation time. 

Table 1. Comparison for sampling rate of 1 s (1s-) and 2 s (2s-) in terms of F-Score. 

 NB KNN Tree RForest SVM LG NN XGB XGBRF Average 
1s-SMMRP-PCA (5 feat.) 0.95 0.94 0.94 0.95 0.94 0.91 0.96 0.97 0.95 0.95 
1s-FFT-PCA (4 feat.) 0.95 0.95 0.94 0.95 0.93 0.94 0.95 0.95 0.94 0.94 
2s-SMMRP-PCA (5 feat.) 0.98 0.99 0.97 1 0.98 0.97 1 0.98 0.99 0.984 
2s-FFT-PCA (4 feat.) 0.99 0.96 0.98 0.99 0.96 0.96 1 0.99 0.99 0.980 

Figure 4a shows that the use of FFT features (in orange) lead to a lower performance 
and the highest average performance is obtained by the combination all features 
(SMMRPFFT, in gray). Although normally it is not advisable to use graphs that are not to 
the actual scale, i.e., normally the Y axis should start at 0, we have chosen scaling in the 
figure to better highlight the slight differences in performance between the results ob-
tained. According to the results in Figure 4c, the use of data from the accelerometer only 
(XYZ_, yellow) performed better with all models when compared to sound data only (S_, 
brown). Sound data only resulted in poorer performance, in particular with KNN, SVM 
and LG classifiers. 

  
(a) (b) 

 
 

(c) (d) 

Figure 4. Comparison of: (a) F-score for SMMRP, FFT and SMMRPFFT features; (b) Computation 
time (in ms) for SMMRP, FFT and SMMRPFFT features; (c) F-score for sound S_, accelerometer 
XYZ_ and sound and accelerometer data (SXYZ_) for SMMRPFFT features for 2 s sampling period; 
and (d) Computation time for sound S_, accelerometer XYZ_ and sound and accelerometer data 
(SXYZ_) for SMMRPFFT features; for 2 s sampling period. 
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The best performance is achieved using the combination of the two sources of tactile 
data (SXYZ_, green; the gray and green bars represent the same information, but the Fig-
ure 4a,c have different scales). The higher performance comes to the price of a slightly 
higher average evaluation time (Figure 4d) of the order of 2.8 ms with respect to the FFT 
features (the fastest on average). On average LG and Tree offer the best compromise in 
terms of performance and evaluation time. The best overall performance, computed as an 
average over all feature combinations is associated with XGBRF (F-score = 0.91) and the 
lowest time with LG and Tree (0.35 ms), while the highest time is associated with RForest. 
These findings suggest that the fusion of SMMRP and FFT features yields more powerful 
composite features capable of achieving good predictions while maintaining a low evalu-
ation time and thus representing good candidates for real-time implementations for this 
specific dataset. However, it is important to verify that this performance generalizes to 
other similar tactile datasets to confirm the robustness of this novel feature combination. 

Another series of tests was aimed at studying the performance by type of texture. We 
analyzed the confusion matrices obtained for all algorithms and all feature combinations. 
Table 2 shows the aggregate correct and wrong predictions, as a percentage over the total 
number of samples from each texture class and as an average over all the algorithms 
tested, for the SMMRPFFT features and for the 12 classes. One can notice that among the 
12 classes, “toy-rubber-tire” (worst performance), “moquette-1”, “fabric-2”, and the two 
samples of “sparkle-paper” are more difficult to classify. These results are coherent with 
Figure 3, in which these classes are overlapping. Among the tested algorithms, Tree and 
NN make the most wrong classifications and XGBRF the least. 

Table 2. Correct and wrong predictions per texture type (material) using SMMRPFFT features. 

Material Correct Predictions (%) 
Wrong Predictions–Material Type, 

Algorithm (%) 
fabric-1 100  
aluminium_film 100  
fabric-2 90 moquette-1, XGB (5%), toy-tire-rub-

ber, NN (5%) 
fabric-3 100  
moquette-1 77 fabric-2, NN, LG, SVM (16%), fabric-4, 

NN (7%) 
moquette-2 100  
fabric-4 100  
sticky fabric_5 100  
sticky-fabric 100  
sparkle-paper-1 95 sparkle_paper-2, LG (5%) 
sparkle-paper-2 92 sparkle_paper-1, Tree (8%) 
toy-tire-rubber 55 fabric-1, LG, SVM, RForest, Tree, 

kNN, NB (44%) 

4. Discussions and Conclusions 
We have successfully implemented and validated a learning method that achieves 

high performance (F-score) in classifying textures measured by tactile sensors. We have 
demonstrated the importance of selecting and extracting features to enhance classification 
performance. Furthermore, we demonstrated that the choice of sample period is a signif-
icant aspect of time series classification, with an important impact on classification accu-
racy. Longer sampling periods (2 s. vs. 1 s) provide more information for classification, 
leading to higher performance (average of 3.59%) but also augment the evaluation time 
by an average of 29.48% over all features and models. Finally, we demonstrated that the 
balance between performance and evaluation time is crucial for informed decisions when 
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selecting a classification model. For the selected dataset, we identified the XGBRF to offer 
the best compromise between performance over all material types and computation time, 
while kNN represents the next best option (1% improvement in performance at the cost 
of 2.13 ms increase in time with respect to XGBRF for SMMRFFT). 
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