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Abstract: Recent research on human action recognition is largely facilitated by skeletal data, a com-
pact representation composed of key joints of the human body. However, leveraging the capabilities 
of artificial intelligence on such sensory input imposes the collection and annotation of a large vol-
ume of skeleton data, which is extremely time-consuming. In this paper, a two-phase semi-super-
vised learning approach is proposed to surmount the high requirements on labeled skeletal data 
while training a capable human action recognition model adaptive to a target environment. In the 
first phase, an unsupervised learning model is trained under a contrastive learning fashion to extract 
high-level human action semantic representations from unlabeled source dataset. The resulting pre-
trained model is then fine-tuned on a small number of properly labeled data of the target environ-
ment. Experimentation is conducted on large-scale human action recognition datasets to evaluate 
the effectiveness of the proposed method. Code is available at https://github.com/tht106/SSA. 
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1. Introduction 
As a notoriously data-driven learning technique, deep learning has demonstrated re-

markable effectiveness in human action recognition by involving massive training on 
large-scale human activity datasets [1,2]. Recently, Graph Convolutional Networks 
(GCNs), tailored for skeleton data, which is efficiently extracted from 3D imaging sensors 
and that offers the merit of being robust to variations in the environment, have achieved 
state-of-the-art performance in human action recognition research [3,4]. 

Even though it is promising to realize a powerful human action recognition model 
via leveraging large-scale public datasets, the operation of the resulting model in practice 
could be challenging. Deploying the model into a target environment, where the distribu-
tions of the target data deviate partially from that of the source training data domain due 
to the particular imaging configuration adopted, refers to the data domain covariate issue 
in the deep learning community [5]. A common strategy to tackle the problem is to con-
duct extra fine-tuning rounds with full supervision of the data collected under the target 
imaging configuration, in order to eliminate the data discrepancy from the source domain 
to the target domain. However, the collection and annotation of a large volume of skeleton 
data for fine-tuning is extremely time-consuming. Meanwhile, the data collection in real 
environments could be highly restricted due to particular privacy considerations. 

This work focuses on an important perspective related to practical deployment of a 
human action recognition model. It is related to the efficient adaptation of a GCN model 
from a public dataset domain to a target environment where only a limited number of 
data will be available for model refining. The semi-supervised adaptation strategy 
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effectively circumvents the overfitting issue in learning with small number of samples. In 
turn, it guarantees a target-environment aware action recognition model that is compati-
ble with state-of-the-art performance. In a first stage, an unsupervised learning framework 
is proposed to discover high-level human action semantic patterns from plenty of unla-
beled skeletal data samples of the source data domain. It is inspired by the recent advances 
in contrastive learning [6] which provides pivotal competency for learning domain invar-
iant representations from unlabeled data. The unsupervised learning phase does not aim 
to realize a capable action recognition model but to develop an action pattern aware pre-
trained model for the next stage. In the second stage, the adaptation strategy refines the 
pretrained model on a small number of labeled skeletal samples to learn a target domain 
specific prediction model. 

The contribution of the proposed work consists of two aspects. First, it investigates 
the underlying principles of the skeletal data distribution shift issue during the practical 
action recognition model deployment. Second, it investigates domain adaptation strategies 
to improve the action recognition models’ generalizability and robustness by introducing 
a semi-supervised adaptation strategy which leads to significant reduction on data re-
quirement in the target domain while achieving convincing performance. 

2. Related Work 
The research on human action recognition addresses a variety of downstream com-

puter vision-based tasks, such as human activity analysis, anomaly action detection, and 
video surveillance in hazardous places. Recently, Graph Convolutional Networks (GCNs) 
demonstrated the capability of interpreting topological features from multi-dimensional 
skeleton sequences, thereby dominating the research on skeletal human action recognition 
[3,4,7]. Yet, the generalization of the action recognition models in real environments is still 
challenging due to the data distribution shift caused by the variations in sensory configu-
ration, e.g., camera views, heights, orientations, locations, and variations in data collec-
tion. Although the current skeletal datasets are devoted to covering the skeletal variations 
during data collection (e.g., NTU RGB+D [1] involves data variations by configuring 3 
camera angles, 16 differences in height and distance, as well as involving 40 actors into 
action performance), the expected robustness of the resulting action recognition model 
remains vulnerable and can be uprooted while facing domain shift in skeletal data [8]. 

Contrastive learning formulates unsupervised representations learning by con-
trasting positive pairs against negative pairs from a pre-defined dynamic dictionary [9,10]. 
In skeletal action recognition, the contrastive learning scheme regards each skeletal se-
quence as a unique class represented by an GCN encoder and exploits the skeletal invari-
ances and similarities from the dynamic dictionary formulated by skeleton sequences 
without using data annotations [6]. Inspired by such advances in contrastive learning, this 
work is devoted to a semi-supervised adaptation scheme for human action recognition. 

3. Method 
This section defines the skeletal data distribution shift issue involved in the practical 

deployment of a human action recognition model. It then proposes a two-phase semi-
supervised training framework, depicted in Figure 1, that relies on significant quantity of 
public data (unlabeled) for pretraining and then refines a target-adaptive model by using 
only a small number of data (labeled) of the target environment. 
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Figure 1. Framework of the proposed semi-supervised adaptation strategy. In the first stage, the 
training data (unlabeled) from the source domain is utilized to contrastive learning after data aug-
mentation. The learned backbone is recycled in stage 2 for refining over the data samples (labeled) 
in the target domain. Network embedding is denoted with dotted lines if it is updated during train-
ing, and with solid lines otherwise. 

3.1. Data Domain Shift in Skeletal Data 
A human action recognition model considers the training dataset {𝑋}  where 𝑋 ∈ℝ்ൈൈଷ  denotes a skeletal sequence composed of 𝑇  frames in the shape of 𝑉  human 

body joints, each one being defined in a calibrated camera reference frame with three-
dimensional coordinates. 𝑌 ∈ ℝ denotes the action label of 𝑋 in a range of 𝐿 categories. 
The goal of skeletal action recognition is to train a GCN model, composed of a graph con-
volution encoder E and a classification layer C, given the input (𝑋௧, 𝑌௧) , where 𝑋௧  is uniformly sampled from the dataset {𝑋} . Normally, considering the test data 
sampled from {𝑋}, i.e., the training and the test data are i.i.d. (independent identical dis-
tributions), the model achieves convincing evaluation performance on the test dataset. 
However, in practical engineering applications, the target deployment environment al-
ways presents misaligned data distributions given the fact that the imaging configuration 
can differ according to the environment, which leads to variations on data distribution 
such that 𝑋௧ and 𝑋் are not i.i.d., where 𝑋் defines the skeletal data sampled in the 
target environment {𝑋், 𝑌 }. The data domain shift corrupts the model performance while 
the model was well-trained on {𝑋௧} but evaluated on {𝑋்}. 

3.2. Semi-Supervised Learning 
To effectively tackle the underlying issue of skeletal domain shift, a two-stage strat-

egy is proposed which (i) utilizes sufficient public dataset samples to pretrain a GCN en-
coder E with contrastive learning, and then (ii) recycles the pretrained E in the second 
stage to refine a target-specific classification layer, 𝐂𝑻, exclusively on the target domain 
samples. The learnt E and 𝐂𝑻 reassemble the target domain adaptive action recognition 
model. The details are as follows. 
• In the first stage, the Extremely Augmented Skeleton (EAS) scheme [6] is used to 

augment the training data with {𝑋௧௨ } to enrich the input space in both spatial and 
temporal dimensions via eight augmentation operations: spatial shear, spatial flip, axis-
wise rotate and mask, temporal flip, temporal crop, Gaussian noise and Gaussian blur. 
The input query-key pairs (𝑋௧, 𝑋௧௨  ) compose a dynamic skeletal dictionary 

upon which the skeleton contrastive learning framework learns underlying topological 
invariances and semantic similarities from the unlabeled source domain {𝑋}. The training 
progress is driven by MoCov2 [11] with the InfoNCE loss: 
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𝐿୍ = −𝑙𝑜𝑔 ୣ୶୮ (∙ೖ)/ఛ.ୣ୶୮ (∙ೖ)/ఛା∑ ୣ୶୮ (∙)/ఛೋ∈𝒩   (1)

where 𝑍  denotes the feature representations of the query input 𝑋௧  as 𝑍 =𝐂𝑺(𝐄(𝑋௧)), where 𝐂𝑺 denotes the multilayer perception (MLP) projection head for con-
trastive learning. Likewise, 𝑍  denotes the feature representation of the key input 𝑋௧௨  obtained by 𝐂തௌ(𝐄ത൫𝑋௧௨ ൯, where 𝐂തௌ and 𝐄ത are the mean models of 𝐂𝑺 and 𝐄, re-
spectively. 𝒩 represents negative sample representations to the query input. 𝜏 acts as 
the temperature parameter of the softmax operation in Equation (1). 
• In the second stage, the pretrained model is refined on a small number of labeled 

skeleton data {𝑋், 𝑌 }  of the target environment. It takes the well-learnt skeletal 
knowledge aware GCN encoder 𝐄 from the ϐirst stage and fine-tunes the reassembled 
GCN model 𝐂்(𝐄(∙))  over the target domain. This stage is driven by a Cross-En-
tropy loss: 𝐿େ = −𝑌 ∙ log [ 𝐂்(𝐄(𝑋்))]  (2)

Note that the encoder 𝐄 is free of gradients backpropagation in the second stage (as 
illustrated in Figure 1). As the encoder is pretrained, this fine-tuning process will quickly 
converge to the target domain data distribution and learn a capable action prediction 
layer. 

4. Experiments 
Comprehensive experimentation is conducted to evaluate the effectiveness of the 

proposed two-stage method in a cross-domain action recognition scenario. 

4.1. Datasets and Implementations 
This study employs two public datasets to simulate the skeletal distribution shift sce-

nario. In particular, NTU RGB+D [1] is considered as the training dataset and PKU-MMD 
[2] as the target environment. The former is a popular large-scale skeleton form human 
action recognition dataset. It presents 56,880 samples covering 60 human daily actions 
recorded in indoor scenes with three cameras mounted in different locations to support 
variations in camera views. It is common to utilize such a large-scale dataset in the re-
search community [3–5] for human action recognition. PKU-MMD is another popular 
public skeletal dataset presenting fewer data samples (20,000 instances over 52 actions), 
but it involves significant camera view variations in the samples. In this paper, it is em-
ployed to mimic practical environments where data collection configurations could be in-
consistent. The samples related to 50 actions common to the two datasets are utilized for 
experimentation. In the first stage, the selected part from the NTU RGB+D dataset is used 
for unsupervised contrastive learning, while one tenth of the samples (namely 1884) of the 
PKU-MMD dataset is used for model refining in the second stage. Given the GCN archi-
tecture considered, ST-GCN [3] is adopted for the network backbone. The output dimen-
sion of 𝐂𝑺 and 𝐂𝑻 is set as 128 and 50, respectively. The parameter 𝜏 in Equation (1) is 
set as 0.07. For model training, it follows the same optimization details as utilized in [6]. 

4.2. Results 
Experimental results are summarized in Table 1 that reports the Top-1 accuracy [1] 

of the resulting models while tested on the full test set of PKU-MMD. As a comparative, a 
source-only model is trained with exclusive full supervision using the NTU RGB+D train-
ing dataset with annotations. The results in the first row of Table 1 illustrate that the re-
sulting model yields convincing results on the NTU RGB+D benchmark, while that source 
only model fails to effectively transfer to the target domain, demonstrating the negative 
impacts of domain shift on model performance. 
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Table 1. Comparative performance of the proposed method against full supervised training. 

Model On Benchmark (NTU RGB+D) On Target Domain (PKU-MMD) 
Source only 69.07% 57.32% 
Adaptation 34.41% 75.74% 

Next, the model is adapted by utilizing the proposed semi-supervised learning 
scheme. Results in the second row of Table 1 reflect the significant improvement achieved 
with the proposed method on the target domain, achieving a gain of 18.42% (from 57.32% 
to 75.74%). We conjecture that, as the data annotations of the source domain are not uti-
lized in contrastive learning, the learnt encoder E is action semantic aware but not over-
fitting to the source domain, which finally results in a capable human action model for 
PKU-MMD. However, a severe performance deterioration is also observed on the bench-
mark NTU RGB+D evaluation (from 69.07% to 34.41%). It demonstrates that the encoder 𝐄 does not form a competent action recognition stage on the source data domain but ra-
ther a reliable intermediate action semantic aware encoding which is efficiently generated 
by unsupervised contrastive learning. 

With the goal to identify the principle that drives performance increase with respect 
to the different amounts of target domain samples involved for model refining, Table 2 
reports on the results of an experiment where the encoder E learnt in the first stage re-
mains fixed but the classification layer 𝐂𝑻 is refined upon different ratios (varying from 
5% to 100%) of samples selected from the target domain PKU-MMD. Experimental results 
demonstrate that the model performance tends to increase monotonically along with the 
ratio of the refining data samples. Interestingly, even using a very small number (e.g., 5%) 
of data samples from the target domain, the model still achieves convincing performance 
compared to the best model (85.06% in Table 2) when using 100% of the PKU-MMD da-
taset. In conclusion, this study suggests good trade-off conditions between data usage and 
performance gains while utilizing the proposed two-stage semi-supervised method. 

Table 2. Performance gains related to different proportions of the target data samples for 𝐂் refine-
ment training. 

Percentage of data use 5% 20% 30% 50% 70% 100% 
Accuracy 71.60% 77.33% 81.03% 82.25% 83.28% 85.06% 

4.3. T-SNE Action Clusters Visualization 
For better understanding of the effectiveness of the proposed method, closer exami-

nation of the embedding features of the two domains is presented using t-SNE [12]. It is 
expected that a capable classification model can interpret separable and dense action clus-
ters on the feature space. Specifically, Figure 2 visualizes the action clusters of the two 
respective domains on the last convolutional layer before the classification head as inter-
preted by the two ST-GCN models (“Source only” on the upper row and “Adaptation” at 
the bottom). The “Source only” model presents well separated action clusters when tested 
on the source domain (left column), which reflects that the model is able to interpret fea-
ture representations from the source domain on which the classification head easily de-
termines action-wise classification boundaries. However, under the impacts of domain 
shift, the source-only model presents less separable action clusters when tested on the 
target domain (right column). Such a discrepancy on action cluster interpretation leads to 
the performance difference across the two domains (69.07% vs. 57.32% in Table 1). Con-
versely, after applying the proposed semi-supervised learning scheme as a refinement 
stage, the model (bottom row) demonstrates effective adaptation to the target domain 
whose action clusters are improved in terms of separability. Improvement is observable 
on both tests considering the source domain (left column) and the target domain (right 
column). 
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Figure 2. T-SNE visualization on action clusters on the embedding space of ST-GCN (upper row: 
“Source only”; bottom row: “Adaptation”). Clusters are distinguished by colors where twenty ac-
tions are randomly selected among fifty actions for clarity. Left column represents action clusters of 
the source domain (NTU RGB+D) and right column shows clusters of the target domain (PKU-
MMD), respectively. 

4.4. Semi-Supervised Learning vs. Supervised Learning 
This subsection presents two experiments to evaluate whether utilizing fully super-

vised learning can reach the same effectiveness as the proposed semi-supervised adapta-
tion method. First, a model trained with full supervision from NTU RGB+D is then fine-
tuned also with full supervision on 10% data samples from PKU-MMD. Second, a separate 
model is trained with full supervision over the combined data samples from NTU RGB+D 
and PKU-MMD (10%). Both trained models are tested on the test dataset of PKU-MMD. 
Experimental results in Table 3 demonstrate that either fully supervised learning method 
presents inferior performance compared to the proposed semi-supervised method. Espe-
cially, the fully supervised transfer learning (pretrain on NTU RGB+D and fine-tuned on 
PKU-MMD) only achieves 45.97% on the target domain, representing a 29.77% gap in ac-
curacy compared to the proposed method. 

Table 3. Performance of Fully supervised learning vs. Semi-supervised learning. 

 
Full Supervision Semi-Supervision 

NTU RGB+D & 10% PKU-
MMD (Fine-Tuning) 

NTU RGB+D & 10% PKU-MMD 
(Combined) 

NTU RGB+D & 10% PKU-MMD 
(Fine-Tuning) 

Accuracy 45.97% 62.61% 75.74% 

5. Conclusions 
This work proposes a simple but efficient method to deploy a skeleton data based 

human action recognition model to a target environment while requiring only a small 
amount of labeled data from the latter. The proposed semi-supervised learning strategy 
utilizes contrastive learning to pretrain a model that learns key skeletal representations 
from an unlabeled dataset, then fine-tunes the pretrained model on a small number of 
labeled data samples in the target domain. Experiments are conducted to demonstrate the 
effectiveness of the proposed strategy. It suggests that the semi-supervised learning 
method achieves convincing results compared to fully supervised learning that requires 
voluminous labeled data from both the source and target domains. The research also 
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experimentally characterizes a tradeoff between data usage and model performance, 
providing reference to develop and deploy future applications. 
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