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Source Training Benchmark [1] Training on the source:

updating the model while training
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» Training a human action recognition model on a skeletal
based benchmark, such as NTU RGB+D [1], is easy to realize

leaving the model parameters

Tested on the source: untouched while testing
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* Model evaluation is promising on the same benchmark.

Test set

Target Deployment Environment (Iack of tralnlng data)  Tested on the target:
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* The trained model fails on inference in the target test
environment due to data domain shift in imaging
configurations (e.g., variations in camera views, heights,
and orientations)

Test set

[1] Shahroudy, A., Jun L., Tian-Tsong N., Gang W. "Ntu rgbh+ d: A large scale dataset for 3d human activity analysis." In CVPR. 2016.
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Supervised Adaptation vs. Semi-supervised Adaptation

Supervised learning conducts extra fine-tuning rounds with full supervision of the
data collected under the target imaging configuration.

However, the collection and annotation of a large volume of skeleton data for fine-
tuning is extremely time-consuming and troublesome, and it could even be prone to
subjectivity while in-volving different subjects performing the same actions.

Semi-supervised learning pretrains a model from the benchmark data set, then
fine-tunes the pretrained model on a small number of labeled data samples in the
target domain.
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: GCN encoder : Classifier for the source domain . Classifier for the target domain

Source Domain: NTU RGB+D Stage 1: Contrastive Learning
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Stage 2: Refinement

Figure 1. Framework of the proposed semi-supervised adaptation strategy. In the first stage, the training data (unlabeled) from
the source domain is utilized to contrastive learning after data augmentation. The learned backbone is recycled in stage 2 for
refining over the data samples (labeled) in the target domain.

[2]Yan, S., Xiong, Y. and Lin, D. "Spatial temporal graph convolutional networks for skeleton-based action recognition." In AAAI. 2018.
[3] Guo, T., Liu, H., Chen, Z., Liu, M., Wang, T. and Ding, R. "Contrastive learning from extremely augmented skeleton sequences for self-supervised action recognition." In AAAI 2022.
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« The Extremely Augmented Skeleton (EAS) scheme [3] enriches the input space in both spatial and temporal
dimensions
¥ It is a video demo
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Table 1. Comparative performance of the proposed method against full supervised training.

Model On benchmark (NTU RGB+D) On target domain (PKU-MMD)

Source only 69.07 % 57.32 %

Adaptation 34.41% 75.74%

Table 2. Performance gains related to different proportions of the target data samples for C; re-

finement training,.
Percentage of data use 5% 20% 30% 50% 70% 100%
Accuracy 71.60% 77.33% 81.03% 82.25% 83.28% 85.06 %

Table 3. Performance of Fully supervised learning vs. Semi-supervised learning.
Semi-supervision

Full Supervision

NTU RGB+D & 10% NTU RGB+D & 10% PKU- NTU RGB+D & 10% PKU-
PKU-MMD (fine tuning) MMD (combined) MMD (fine-tuning)
Accuracy 45.97% 62.61% 75.74%

[4] Liuy, C., Hu, Y., Li, Y., Song, S. and Liu, J. "PKU-MMD: A large scale benchmark for skeleton-based human action understanding.” In Proceedings of the Workshop on VASCC, pp. 1-8. 2017.



ECSA-10

T-SNE Visualization
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bow

brushing hair
cheer up
cross hands
drink water
drop
handshaking
jump up
kicking

point finger
point to sth.
put on a hat
put sth. in pkt.
rub hands
salute

take off jacket
touch back
touch chest
touch neck

typing

Figure 2. T-SNE visualization on action clusters on the embedding space of ST-GCN (upper row: “Source only”;
bottom row: “Adaptation”). Clusters are distinguished by colors where twenty actions are randomly selected among
tifty actions for clarity. Left column represents action clusters of the source domain (NTU RGB+D) and right column
shows clusters of the target domain (PKU-MMD), respectively.
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Conclusion

This work proposes a simple but efficient method to deploy a skeleton data based human action
recognition model to a target environment while requiring only a small amount of labeled data from
the latter.

» The proposed semi-supervised learning strategy utilizes contrastive learning to pretrain a model
that learns key skeletal representations from an unlabeled dataset, then fine-tunes the pretrained
model on a small number of labeled data samples in the target domain.

» Experiments are conducted to demonstrate the effectiveness of the proposed strategy. It suggests
that the semi-supervised learning method achieves convincing results compared to fully
supervised learning that requires voluminous labeled data from both the source and target
domains.

* The research also experimentally characterizes a trade-off between data usage and model
performance, providing reference to develop and deploy future applications.
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