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Abstract: Indoor positioning systems are a significant area of research and development, helping 
people navigate within buildings where GPS signals are unavailable. These systems have diverse 
applications, including aiding navigation in places like shopping malls, airports, and hospitals, and 
improving emergency evacuation processes. The purpose of this study is to evaluate various tech-
nologies and algorithms used in indoor positioning. The study focuses on using raw distance data 
and Kalman filters to enhance indoor position accuracy. It employs a trilateration algorithm based 
on Recursive Least Squares (RLS) for initial position estimation and combines the results with ac-
celerometer data. The designed algorithm using real sensor data collected in the ROS environment 
has been tested, and the results obtained are compared with data obtained from the Vicon Indoor 
Positioning System. In this comparison, the Root Mean Square Error metric is used. As a result of 
the comparison, it is observed that the error obtained from the designed algorithm is less than that 
of the Vicon system. 

Keywords: indoor positioning; Extended Kalman Filter; ROS; sensor fusion 
 

1. Introduction 
In recent years, Unmanned Aerial Vehicles (UAVs) have found extensive applications 

in various fields, including military, industry, agriculture, as well as tasks like aerial pho-
tography and reconnaissance [1–3]. However, it’s worth noting that these applications 
primarily take place outdoors and rely on robust GPS signals for accurate positioning. In 
cases where GPS signals are unavailable or weak, the precision of UAV positioning is sig-
nificantly impacted. Presently, there is a growing need for indoor UAV technology, par-
ticularly for inspection purposes, which is closely tied to control optimization and precise 
path tracking. 

Ultra-Wideband (UWB) technology has garnered significant attention due to its high 
precision in indoor positioning. UWB systems leverage short-duration pulses of radio 
waves spread across a wide spectrum, enabling accurate distance measurements through 
time-of-flight and trilateration techniques. Aiello and Shalom [4], delves into the princi-
ples of UWB and its significance in achieving precise and real-time positioning. 
Heimovirta, Salantera and Röning [5], discuss the practical implementation of a real-time 
indoor localization system based on UWB technology. This work focuses on the utiliza-
tion of UWB for indoor positioning, providing insights into its application in real-world 
scenarios. 

Vicon positioning systems are based on motion capture technology, utilizing cameras 
and markers to accurately track the movement and position of objects or individuals in a 
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controlled environment. Rhea [6], assesses the accuracy and precision of Vicon motion 
capture systems for tracking movements in three dimensions (3D). This work focuses on 
evaluating the reliability of Vicon systems in capturing 3D motion data. Gentil, de la Rou-
viere, and Elton [7], discuss Vicon as a computer vision solution for real-time 3D motion 
capture. It highlights the capabilities of Vicon technology in capturing and analyzing 3D 
motion data in real-time, particularly in the context of rehabilitation and neuroengineer-
ing. Benn and Martin [8], provide insights into the utilization of Vicon systems for captur-
ing and analyzing motion data in the context of sports and healthcare. 

In this paper, an accurate position estimation is calculated by combining the IMU and 
the raw distance data with the help of the Extended Kalman Filter (EKF). Initially, a posi-
tion estimation is obtained using the Recursive Least Square (RLS) method with a trilat-
eration algorithm. This solution, is used as a starting point for RLS. After, this position 
estimation is fused with the acceleration data. As a result, the estimated position obtained 
with the designed Extended Kalman Filter (EKF) is compared with the Vicon indoor po-
sitioning system, and the results are presented both graphically and in tabular form. 

2. Position Estimation Algorithm 
The position estimation algorithm is based on geometric approach and Extended Kal-

man Filter algorithms. After these algorithms are designed in a simulation environment, 
they are integrated into ROS (Robot Operating System) and tested with real sensor data, 
and the results are observed. 

2.1. Geometric Approach 
A geometric approach has been put forward in the basis of the study. As shown in 

the figure below, three reference points are given B1(x1,y1,z1), B2(x2,y2,z2) and B3(x3,y3,z3) 
and d1, d2, d3 interval measurements up to point A are given. The determination of the 
coordinates of the point A is carried out by solving the system of quadratic equations.   (𝑥 − 𝑥ଵ)ଶ + (𝑦 − 𝑦ଵ)ଶ + (𝑧 − 𝑧ଵ)ଶ = 𝑑ଵଶ (𝑥 − 𝑥ଶ)ଶ + (𝑦 − 𝑦ଶ)ଶ + (𝑧 − 𝑧ଶ)ଶ = 𝑑ଶଶ (𝑥 − 𝑥ଷ)ଶ + (𝑦 − 𝑦ଷ)ଶ + (𝑧 − 𝑧ଷ)ଶ = 𝑑ଷଶ 

(1)

 
Figure 1. Reference Points and Interval Measurements. 

The system of equations given here can be expressed as follows. (𝑥ଶ + 𝑦ଶ + 𝑧ଶ) − 2𝑥ଵ𝑥 − 2𝑦ଵ𝑦 − 2𝑧ଵ𝑧 = 𝑑ଵଶ − 𝑥ଵଶ − 𝑦ଵଶ − 𝑧ଵଶ (𝑥ଶ + 𝑦ଶ + 𝑧ଶ) − 2𝑥ଶ𝑥 − 2𝑦ଶ𝑦 − 2𝑧ଶ𝑧= 𝑑ଶଶ − 𝑥ଶଶ − 𝑦ଶଶ − 𝑧ଶଶ (𝑥ଶ + 𝑦ଶ + 𝑧ଶ) − 2𝑥ଷ𝑥 − 2𝑦ଷ𝑦 − 2𝑧ଷ𝑧 = 𝑑ଷଶ − 𝑥ଷଶ − 𝑦ଷଶ − 𝑧ଷଶ 

(2)

In addition to that, this expression can be shown in matrix form as below. 
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൥111   −2𝑥ଵ−2𝑥ଶ−2𝑥ଷ   −2𝑦ଵ−2𝑦ଶ−2𝑦ଷ  −2𝑧ଵ−2𝑧ଶ−2𝑧ଷ൩ ൦𝑥ଶ + 𝑦ଶ + 𝑧ଶ𝑥𝑦𝑧 ൪ = ቎𝑠ଵଶ − 𝑥ଵଶ − 𝑦ଵଶ − 𝑧ଵଶ𝑠ଶଶ − 𝑥ଶଶ − 𝑦ଶଶ − 𝑧ଶଶ𝑠ଷଶ − 𝑥ଷଶ − 𝑦ଷଶ − 𝑧ଷଶ቏ (3)

This matrix form generally can be expressed as follows. 𝐴଴. 𝑥 = 𝑏଴             x ∈ 𝐸 𝐸 = { (𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)்𝜖     𝑥଴ = 𝑥ଵଶ +𝑥ଶଶ + 𝑥ଷଶ} 
(4)

When examining the solution set, there are generally two different approaches. These 
are divided into three reference point-based and more than three reference point-based 
solutions. The details of these solution sets are elaborated in [9,10]. In brief, for the first 
scenario, the solution space varies depending on whether three reference points are in the 
same line or not. The second scenario involves having more than three reference points, 
which necessitates the use of the Recursive Least Squares method for the solution set. 

Distance data is used together with the recursive least square algorithm to help to 
calculate the position. In the next section, the details of a more accurate position estimation 
with the help of EKF will be explained. 

2.2. Sensor Fusion Algorithm 
The systems’s state vector is chosen as: 

𝑋 = ቎𝑝(𝑤)𝑣(𝑤)𝑎(𝑤)቏ (5)

The vector p(w) denotes an object’s position in the world coordinate system, specify-
ing its coordinates on the x, y, and z axes as [px, py, pz]. The object’s velocity along these 
axes in the world coordinate system is represented as v(w) = [vx, vy, vz] while its accel-
erometer data in the world coordinate system is denoted as a(w) = [ax, ay, az]. 

To elaborate further, the time interval between measurements is defined as ∆t, and 
(∆t)w(k) defined as the process noise related to acceleration. Specifically, ∆௧మଶ 𝑤(𝑘) repre-

sents the process noise affecting velocity, and ∆௧య଺ 𝑤(𝑘) characterizes the process noise that 
influences position. 

Equations of motion in the (k + 1) time interval can be expressed as follows: 𝑝(𝑘 + 1) = 𝑝(𝑘) + 𝑣(𝑘)(∆𝑡) + 𝑎(𝑘) ∆𝑡ଶ2 + ∆𝑡ଷ6 𝑤(𝑘) 

𝑣(𝑘 + 1) = 𝑣(𝑘) + 𝑎(𝑘)(∆𝑡) + ∆𝑡ଶ2 𝑤(𝑘) 𝑎(𝑘 + 1) = 𝑎(𝑘) + (∆𝑡)𝑤(𝑘) 

(6)

The state equation can be represented in matrix form as follows: 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐺𝑤(𝑘) (7)

The matrices A and G, represent the transition matrix and noise process matrix re-
spectively. Process noise vector and Q covariance can be defined as follows. 
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𝑤(𝑘) = [𝑤௫(𝑘) 𝑤௬(𝑘) 𝑤௭(𝑘)], 𝑄 = 𝑑𝑖𝑎𝑔([𝜎௔௫ଶ  𝜎௔௬ଶ  𝜎௔௭ଶ ]) 

𝐴 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
 1  00000000

0  1 0000000

0   01000000

∆𝑡  00100000

0  ∆𝑡0010000

0  1∆𝑡001000

∆𝑡ଶ 2⁄  00∆𝑡00100

0 ∆𝑡ଶ 2⁄00 ∆𝑡0010

0 0∆𝑡ଶ 2⁄00∆𝑡001 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤ , 𝐺 =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡∆𝑡ଷ6 0 00 ∆𝑡ଷ6 00 0 ∆𝑡ଷ6∆𝑡ଶ2 0 00 ∆𝑡ଶ2 00 0 ∆𝑡ଶ2∆𝑡 0 00 ∆𝑡 00 0 ∆𝑡 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

 
(8)

Observation vector z(k) contains the distance values used in the geometric approach 
and an additional noise vector. 

𝑧(𝑘) = ൦𝑑ଵ(𝑘) + 𝑛ଵ(𝑘)𝑑ଶ(𝑘) + 𝑛ଶ(𝑘)𝑑ଷ(𝑘) + 𝑛ଷ(𝑘)𝑑ସ(𝑘) + 𝑛ସ(𝑘)൪ = 𝐻(𝑘)𝑥(𝑘) + 𝑛(𝑘) (9)

The observation matrix is represented by H(k) and the vector of noise, with a mean 
of zero and a covariance matrix, is represented by n(k). 𝑅 = 𝑑𝑖𝑎𝑔([𝜎௥ଵଶ  𝜎௥ଶଶ  𝜎௥ଷଶ  𝜎௥ସଶ ]) (10)

where, r1, r2, r3, r4 are the distance values of the Marvelmind sensor to each other. 
The H(k) observation matrix is a Jacobian matrix and is calculated as follows: 

𝐻(𝑘) =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
𝛿𝑑ଵ(𝑘)𝛿𝑝௫(𝑘) 𝛿𝑑ଵ(𝑘)𝛿𝑝௫(𝑘) 𝛿𝑑ଵ(𝑘)𝛿𝑝௫(𝑘)𝛿𝑑ଶ(𝑘)𝛿𝑝௫(𝑘) 𝛿𝑑ଶ(𝑘)𝛿𝑝௫(𝑘) 𝛿𝑑ଶ(𝑘)𝛿𝑝௫(𝑘)𝛿𝑑ଷ(𝑘)𝛿𝑝௫(𝑘) 𝛿𝑑ଷ(𝑘)𝛿𝑝௬(𝑘) 𝛿𝑑ଷ(𝑘)𝛿𝑝௭(𝑘)𝛿𝑑ସ(𝑘)𝛿𝑝௫(𝑘) 𝛿𝑑ସ(𝑘)𝛿𝑝௫(𝑘) 𝛿𝑑ସ(𝑘)𝛿𝑝௫(𝑘)⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 (11)

The equations described in the structure of the applied EKF are utilized. The initiali-
zation stage of this filter is one of the crucial factors, where the initial values of the covar-
iance matrices are assigned. Subsequently, the prediction and update steps are executed 
in sequence. xതₖ =  f(xොₖିଵ, uₖ) Pഥₖ =  AₖିଵP෡ₖିଵAₖିଵᵀ +  Qₖିଵ 𝐾௞ = 𝑃ത௞𝐻௞் [𝐻௞𝑃ത௞𝐻௞் + 𝑅௞]ିଵ xොₖ =  xതₖ +  Kₖ൫zₖ −  h(xതₖ)൯ 𝑃෠௞ = (𝐼 − 𝐾௞𝐻௞)𝑃ത௞ 

(12)

In the following section, the integration of this geometric approach with EKF algo-
rithms into the ROS platform will be described, and its implementation with real dataset 
will be discussed. The obtained results will be presented in detail. 
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3. Implementation and Simulation System Results 
After the designed geometric approach and EKF structure, they are transferred to the 

simulation environment using C++. The code structure is integrated into the PX4 code, 
making it compatible with the ROS environment. The acceleration data from UWB sensors 
is received at approximately 40 Hz, while the raw distance data arrives at around 80 Hz. 
To address this discrepancy, time synchronization is achieved between the acceleration 
and distance data. The acceleration data is upsampled to 80 Hz using interpolation. Ad-
ditionally, since Vicon data is received at a rate of 20 Hz, it is necessary to perform time 
synchronization with the position data obtained from EKF results. Therefore, Vicon data 
is upsampled to 80 Hz using interpolation to ensure proper time synchronization. 

When looking at Figures 2 and 3, it is easily noticeable that the X, Y, and Z positions 
obtained from the EKF are closer to the reference results than those obtained from the 
Vicon system. Additionally, Figure 3 depicts the differences between the EKF and Vicon 
in relation to their respective reference values. Examining the position error values in Ta-
ble 1, it is observed that the average difference between the EKF and the reference is 0.205 
m, while for the Vicon, this difference is 0.255 m. Moreover, when looking at the minimum 
and maximum errors, it is evident that the values obtained from the EKF are lower than 
those obtained from the Vicon system. In summary, through a numerical comparison of 
the results, it is apparent that the designed EKF algorithm provides better results com-
pared to the Vicon positioning system. 

  
Figure 2. X and Y positions (Vicon-EKF-Reference). 

 
 

Figure 3. Z position and Vicon and EKF differences from reference. 

  

m 

sn 

m 

sn 

m 

m 

sn 
sn 



Eng. Proc. 2023, 56, x FOR PEER REVIEW 6 of 6 
 

 

Table 1. Position Error Values. 

 Minimum Error (m) Mean Error (m) Maximum Error (m) 
Ref-EKF 0.019 0.205 0.424 
Ref-Vicon 0.07 0.255 0.441 

4. Conclusions 
In this study, position estimation is calculated by fusing raw distance data with the 

IMU using sensor fusion algorithms, specifically through the Extended Kalman Filter. The 
fundamental structure of the designed algorithm incorporates a geometric approach. 
Firstly, a position calculation is derived from the geometric approach, and then the accu-
racy of this position is enhanced using an accelerometer data and the EKF algorithm. The 
designed algorithm is transformed into the C++ environment and integrated into ROS 
(Robot Operating System). Real sensor data is used during the testing of the algorithm. 
Sensor data is collected using the ROS platform, and the algorithm is executed within ROS 
to observe the obtained results. According to the results obtained, the designed EKF struc-
ture yielded more successful outcomes compared to the Vicon position system. These re-
sults are supported both graphically and through numerical tables. 
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