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Abstract: Spiro-oxindoles are important heterocyclic motifs found in various alkaloids and many of 
which exhibited pharmacological properties. Due to the remarkable biological activity of spiro-ox-
indoles, significant effort has been paid towards the synthesis of substituted spirooxindoles. In this 
paper, the preliminary results towards the synthesis of 3,3/-spiro pentacyclo-oxindole derivatives 
by the ring-closing metathesis of 3,3-diallyl oxindoles has been reported. The ring-closing metathe-
sis reaction proceeded smoothly with Grubb’s catalyst-I (2 mol%) in toluene at room temperature. 
The desired products, 3,3/-spiro pentacyclo-oxindoles were obtained in good to excellent yields un-
der standard reaction conditions.  
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Introduction 
Indoles and its annulated derivatives are very important heterocyclic compounds 

found a variety natural products [1] and several of which exhibited remarkable biological 
activities including antimalarial, anti-inflammatory, antiasthmatic, antibacterial, antihy-
pertensive, anti-cancer and tyrosine kinase inhibiting agents [2]. Spirocycloxindoles also 
have wide applications in medicinal chemistry and pharmacological fields.[3] Several func-
tionalized spirocycloalkyloxindoles has been used as an active intermediate for the prep-
aration of complex molecules of biological interest [4]. This core moiety is the basic skele-
ton of various natural alkaloids including coerulescine, horsfiline, welwitindolinone A, 
spirotryprostatin A, elacomine, alstonisine, surugatoxin, etc [5]. Due to the remarkable 
biological activity of spiro-oxindoles, significant effort has been paid towards the synthe-
sis of substituted spirooxindole derivatives [4,6]. However, application of ring closing me-
tathesis [7] for the synthesis of spirocyclo-oxindole derivatives has not been reported.  

During the last decades, the ring-closing metathesis (RCM) reactions have been 
widely used as a synthetic tool for the construction of a great variety of carbo- and heter-
ocyclic systems [8]. The RCM has been considered as a highly effective and practical 
method in organic synthesis. In our previous works [9], we have reported the synthesis of 
some annulated heterocycles by RCM using ruthenium carbene catalyst-I and II (Figure 
1) [10]. In this paper, we reported the preliminary results of the ring closing metathesis 
reaction involving indole moiety. The ring-closing metathesis reaction of 3,3-diallyl oxin-
doles leading to 3,3/-spiro pentacyclo-oxindole derivatives with 2 mol% of Grubb’s cata-
lyst-I in toluene solvent. The required starting materials 3,3-diallyl oxindoles were pre-
pared by the simple alkylation of oxindoles with allyl bromide in the presence of NaH at 
room temperature.  
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Figure 1. Structures of Grubb's catalysts)  

Figure 1. 

Result and Discussion 
We have chosen 3,3-diallyl oxindoles (2) as starting materials for the preparation of 

3,3/-spiro pentacyclo-oxindoles. The simple alkylation of oxindoles with allyl bromide in 
the presence of NaH at room temperature to give the requisite starting materials 3,3/-dial-
lyl oxindoles (Scheme 1).  

N
R

O

1a. R = Me
1b. R = Et
1c. R = Ph

Br+
NaH (2.2 eq.)

THF, r.t, 7-8 h N
R

O

2a. R = Me (71%)
2b. R = Et (69%)
2c. R = Ph (56%)

Scheme 1. Preparation of 3,3-diallyl N-subsitituted 2-oxindoles.  

Scheme 1. 
To examine the feasibility of the metathesis approach, we attempted the ring closing 

metathesis (RCM) reaction of diene 2a with 2 mol% of catalyst-I. The RCM on diene 2a 
with 2 mol% of catalyst-I in CH2Cl2 at room temperature under nitrogen atmosphere led 
to 3,3/-spiro pentacyclo-oxindole (3a) in poor yield (37%). The use of 5-mol% of catalyst 
did not improve the yield of the product to any appreciable extent. However, the yield of 
the product was found to be raised to 92% by conducting the reaction in toluene at room 
temperature (Scheme 2). Heating of the reaction at 60 °C led to considerable decomposi-
tion of the starting materials. The ring-closing metathesis reactions with compounds 2b 
and 2c were also proceeded smoothly with 2 mol% of Grubb’s catalyst-I in toluene solvent 
at room temperature. All the reactions were completed in 5h and provided high yield of 
spiro oxindole derivatives. 
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Scheme 2. 

Conclusions 
In conclusion, we have carried out the ring closing metathesis of 3,3-diallyl oxindoles 

with Grubb’s first generation catalyst for the synthesis of 3,3/-spirocyclic oxindoles. The 
reaction occurred smoothly at room temperature in short reaction of time. 

Experimental 
Melting points of the newly synthesized compounds were determined in open capil-

laries and are uncorrected. 1H NMR (400 MHz) spectra were recorded on a Bruker DPX-
400 spectrometer in CDCl3 solvent with TMS as internal standard. Silica gel [(60–120 
mesh), Spectrochem, India] was used for chromatographic separation. Pre-coated Alumi-
num plate [Merck(India)] is used for thin layer chromatography 

Procedure for the preparation of compound 2a: 
A mixture of N-methyl 2-oxyindole 1 (0.500 gm, 3.40 mmol), allyl bromide (2.5 eq., 

8.5 mmol), NaH was stirred in dry THF (20 mL) for 7 h at room temperature. The reaction 
mixture was quenched with water and resulted mixture was extracted with CH2Cl2 (3 × 
10 mL). The combined CH2Cl2 extract was washed with water and dried (MgSO4). The 
residual mass after removal of CH2Cl2 was subjected to column chromatography over sil-
ica gel (60–120 mesh) using petroleum ether:ethyl acetate (9:1) as eluent to give com-
pounds 2a.  

Compound 2a. 
Yield: 71 %; colourless solid; 1H NMR (CDCl3, 400 MHz): δH = 2.51-2.62 (m, 4H), 3.74 

(s, 3H), 4.83 (d, J = 10.1 Hz, 2H), 4.99 (d, J = 17.0 Hz, 2H)), 5.30-5.41 (m, 2H), 6.79 (d, J = 7.7 
Hz, 1H), 7.17 (t, J = 7.1 Hz, 1H), 7.16-7.26 (m, 2H) ppm; MS: m/z for C15H17NO: 227 [M+]. 

Compound 2b. 
Yield: 69 %; colourless solid; 1H NMR (CDCl3, 400 MHz): δH = 1.19 ( t, J = 7.2 Hz, 3H 

), 2.49-260 (m, 4H), 3.71 (q, J = 7.2 Hz, 2H), 4.86 (d, J = 10.2 Hz, 2H), 4.97 (d, J = 16.9 Hz, 
2H)), 5.32-5.42 (m, 2H), 6.81 (d, J = 7.76 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.3 Hz, 
1H), 7.22-7.24 (m, 1H) ppm; MS: m/z for C16H19NO: 241 [M+]. 

Compound 2c. 
Yield: 56 %; colourless solid; 1H NMR (CDCl3, 400 MHz): δH = 2.49-2.60 (m, 4H), 4.81 

(d, J = 10.1 Hz, 2H), 4.98 (d, J = 17.0 Hz, 2H)), 5.29-5.40 (m, 2H), 6.70 (d, J = 7.2 Hz, 1H), 
7.13-7.18 (m, 3H), 7.77-7.33 (m, 3H),  7.41-7.43 (m, 1H) ppm; MS: m/z for C20H19NO: 289 
[M+]. 
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Typical Procedure for the Enyne RCM: 
The Grubb’s catalyst-I (2 mol%) was added to a magnetically stirred solution of 2a 

(114 mg, 0.5 mmol) in dry toluene (2 mL) under N2 atmosphere. The reaction mixture was 
stirred at room temperature for 5 h. After completion of reaction time, the solvent was 
removed under reduced pressure and the residue was subjected to column chromatog-
raphy over silica gel using petroleum ether-ethyl acetated (4:1) as eluent to give 3a in 92 
% yield. Similar treatment of compound 2b and 2c provided 3b and 3c in 90 % and 84 % 
yields, respectively.  

Compound 3a: Yield: 92 %; solid; 1H NMR (CDCl3, 400 MHz): δH = 2.58 (d, J = 14.4 
Hz, 2H), 2.98 (d, J = 14.9 Hz, 2H), 3.22 (s, 3H), 5.83 (s, 2H), 6.81 (d, J = 8.0 Hz, 1H), 7.01 (t, J 
= 7.44 Hz, 1H), 7.22-7.25 (m, 2H) ppm; MS: m/z for C13H13NO: 199.0987 [M+]. 

Compound 3b: Yield: 90 %; solid; 1H NMR (CDCl3, 400 MHz): δH = 1.27 ( t, J = 7.3 Hz, 
3H), 2.57 (d, J = 14.6 Hz, 2H), 2.98 (d, J = 14.8 Hz, 2H)), 3.76 (q, J = 7.2 Hz, 2H), 5.82 (s, 2H), 
6.83 (d, J = 7.7 Hz, 1H), 6.99 (t, J = 7.3 Hz, 1H), 7.21-7.25 (m, 2H) ppm; MS: m/z for C14H15NO: 
213.1172 [M+]. 

Compound 3c: Yield: 84 %; solid; 1H NMR (CDCl3, 400 MHz): δH = 2.58 (d, J = 14.7 
Hz, 2H), 2.99 (d, J = 14.7 Hz, 2H)), 5.83 (s, 2H), 6.82 (d, J = 7.7 Hz, 1H), 7.01 (t, J = 7.3 Hz, 
2H), 7.21-7.25 (m, 4H), 7.28-7.31 (m, 2H) ppm; MS: m/z for C18H15NO: 261.1160 [M+]. 
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