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Abstract: Among the hopeless tries for finding new solutions against Multi-Drug Resistant (MDR) 
bacteria, Nanoparticles (NPs) especially silver nanoparticles (AgNPs) have been among the most 
outstanding antimicrobial and anti-MDRs because of their magnificent physical and chemical prop-
erties. Due to high costs and numerous tries and errors, there should be some strategies for predict-
ing the anti-MDR activities of NPs. In the present study, a Machine Learning (ML) based model; 
Random Forest (RF) was applied to predict the anti-MDR activities of AgNPs. Once, the literature 
was provided, the desired information regarding the physical and chemical information besides the 
taxonomical information of the MDR bacteria was retrieved. Then, the preprocessing strategies were 
applied. Subsequently, the model was predicted with a high accuracy (R2 = 0.73). The analysis of 
significant attributes revealed that Dose, DLS_size, MDR bacteria species are the most significant 
factors in the anti-MDR activities of silver nanoparticles. The findings proved this tool can help 
scientists to have reasonable assumptions toward anti-MDR activities of AgNPs before any experi-
ments, cutting the high costs of numerous experiments. 
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1. Introduction 
Antibiotics’ overconsumption causes prolonged hospitalization and extensive death 

cases. Practices for prohibition of antibiotic resistance in microbes consist lowering anti-
biotics consumption, optimized drug release, modification in antibiotic targets, introduc-
tion of antibiotics for destroying and modifying the microbial enzymes etc. Unfortunately, 
antimicrobial resistance has been occurred against some antibiotics, which are widely ad-
ministered against some fetal and pathogenic microorganisms [1]. It is so disappointing 
that no effective kinds of antibiotics have been produced newly to overcome this problem. 
On the other hand, the design and production of a new type of antibiotics is expensive 
and time-consuming including consumption of new compounds and numerous clinical 
trials [2]. The reoccurrence of resistance against newly developed antibiotics leads this 
process to the development of substitutes to overcome these challenges [3]. NPs are one 
of the most frequently produced nanomaterials, which has extended antimicrobial prop-
erties due to their special physical and chemical properties (p-chem). Since they present 
remarkable antimicrobial properties [4], they have been suggested as promising substi-
tutes for antibiotics [5]. Based on the literature, metal-based NPs are vigorous agents in 
the attempt for the control and elimination of the microorganisms specially drug-resistant 
strains [6,7]. For example, a lot of investigations have reported the antimicrobial activities 
of AgNPs against a spectrum of multi-resistant bacteria; including MDR Pseudomonas ae-
ruginosa, Methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella aerogenes and etc. 
[8]. It is supposed that antibacterial properties of NPs are determined by three factors: (1) 
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Physical and chemical characterization of a NP, (2) The taxonomical features of a bacteria 
and (3) Experimental conditions [9]. Since not all NPs have the capacity for being applied 
in the combat for eradication of antibiotic resistant bacteria, thus the discovery of such an 
ideal antibiotic in this case requires hard work and too much time. It is needed to have 
some predictions about the desired NPs with suitable antibiotic properties for the control 
and eradication of MDR bacteria. There has been computational methods to help the re-
searchers to predict the physical and chemical properties of a NP before its production 
[10].  

Machine learning (ML) answers the question of how to design and construct com-
puters that are taught automatically by experiences and practices. The benefits of ML over 
practical procedures are being economic and independency of these methods to physical 
and chemical reactions. Something, which is so vital for medical trials. Up to now, ML has 
been employed to predict successful delivery of anticancer drugs [11] or direct delivery of 
anticancer NPs into cancer cell lines [12]. In another study, antioxidant properties of na-
nomaterials were predicted by ML [13]. Saadat et al. [14] suggested a ML tool for the pre-
diction of antibacterial effects of biogenic silver NPs against gram negative and gram pos-
itive bacteria. But none of these investigations have focused on the prediction of antimi-
crobial effects of NPs against MDR bacteria. The bases of these predictions tools are p-
chem properties, experimental conditions and microbes and cell lines as inputs. All in 
vitro information were accumulated from research articles and were collected in a com-
prehensive database. This research screens silver NPs, predicts their antibacterial effects 
for the control and eradication of MDR bacteria to save time and decreasing the expenses 
by reducing the frequency of clinical trials. Suggestion of such a ML based tool can control 
and inhibit the growth and biofilm formation of MDR bacteria that are of a great im-
portance for public health.  

2. Material and Methods 
The path followed to implement the model is presented in Figure 1. In particular, 

researches regarding the anti-MDR effects of AgNPs were accumulated and data reterival 
was carried out in respect of physical and chemical identifications of NPs, exposure con-
ditions and toxonomical features of the bacteria. All the original data sets have been as-
sessed as complete. There was then the preprocessing of information, including standard-
isation, transversion of categorical features to numerical ones and data categorization. 

 
Figure 1. Random Forest model development prcess for the prediction of anti-MDR activities of 
AgNPs. 

We set up several regression models and verified their accuracy so we could find a 
model with good predictability. In order to identify the attributes that have a major impact 
on predictions of results, an analysis of their relevance was carried out. 
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2.1. Data Selection 
A literature search for studies looking at the effects of AgNPs on eradication or inhi-

bition of MDR was carried out in 10.23.2022. Between 2012 and 2022, the articles collected 
included various keywords, such as “bactericidal”, “antibacterial, “microbicide” and “an-
timicrobials”. There were approximately 1000 articles found. As previously mentioned, 
the reason for the selection AgNPs is that it is the most studied case in this regard. The 
studies have included chemical, physical and green synthesis of AgNPs. English lan-
guage, original studies with a view to antibacterial properties of NPs for only MDR bac-
teria published over the last 10 years and in vitro investigations are discharge factor. The 
discharge factor apply to case reports, reviews, studies showing binary results and studies 
which demonstrate their findings by means of illustrations. It appears that, in total, 
around 517 documents are relevant to this examination, but it is only the information con-
cerning 70 articles which has been obtained because all of them do not meet the desired 
factor. In vitro studies were used solely because they replaced, reduced and enhanced 
animal tests with no consideration of the impact of pharmacokinetics in order to perform 
unexplanatory testing [15].  

2.2. Retrieving Data  
2.2.1. The Retrieval of Input Data 

Each research was evaluated with a concentration on (i) the chemial composition of 
NPs (AgNPs); (ii) the physical and chemical characterization parameters and (iii) the 
study design experimental parameters. For having accurate predictions on the antibacte-
rial activities of AgNPs, these variables have been obtained as an input parameters [9]. 

2.2.2. The Retrieval of Output Data 
Several assays and methods have been reported in studies for the evaluation of anti-

microbial efficacy. Some outcomes based on antibacterial measurements were filed, such 
as optical density (OD), colony-forming unit (CFU), minimum bactericidal concentration 
(MBC), minimum inhibitory concentration (MIC) and zone of inhibition (ZOI). In the out-
put values, there were various metrics and expressions which highlighted the need for a 
standardised method to report scientific data. 

2.3. Data Transformation 
Missing data has been reported in some of the numerical attributes from the original 

Raw Dataset I. We have created the final dataset, which is known as “Dataset II” following 
selection of outcomes. There were only a handful of missing values from the inputs in our 
final data. We filled out the missing values by an average of the data provided in one 
column, because regression models do not work well with null data [16]. Categorical at-
tributes must be transformed into numerical attributes in regression models. Multiple 
conversion methods are used to make the new columns appear in the main dataset; for 
each specified column, we created dummy variables which have been converted into a 
single data set. For the purpose of indicating whether or not original attributes are present, 
a value 0 or 1 was used [17]. 

For the purpose of ensuring model accuracy, numeric data should be normalized. Z 
Score, minmax scaler, standard scaler and median absolute strategy can be used for this 
process. The minmax scaler strategy has been applied in this study. This estimator scales 
and translates each individual attribute so that it falls within a certain range on the train-
ing set, for example, between 0 and 1 [18]. A training set has already been given to the 
supervised computer algorithm that can be used to approximate the output of an uniden-
tified target function. The data was randomly divided into two series, one seri to train the 
model (training serie) with 70% data, and the other serie (30%) to evaluate the model effi-
ciency (test serie). 
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2.4. Model Development, Evaluation and Attribute Importance Analysis 
Regression techniques build models that can calculate new numerical values out of 

input variables. Regression modeling involves associating a function that maps inputs to 
continuous outputs [9]. The applied ML algorithm functions from the chemical and phys-
ical characterization of NPs and experimental situation to the ability to inhibit MDR-bac-
teria and helps predict the anti-MDR ability of NPs. In this research, Random Forest (RF) 
was applied to predict the anti-MDR activities of AgNPs. The model was developed in 
Python 3.8, Scikit-learn version 1.3.0. It consists of a set of decision trees and integrates 
interactions and feature selection naturally into the learning process. It is nonparametric, 
explainable, efficient, and provides high prediction accuracy for a wide range of data [19]. 
The model was assessed using mean absolute error (MAE), root mean square error (MSE), 
root mean square error (RMSE), and coefficient of determination or R squared (R2) [20]. 
The significance of attributes is a monitored event where the most important characteris-
tics are differentiated and ranked according to their importance for predicting outcomes. 

3. Results 
3.1. Data Transformation  

In the dataset I, rows and 18 columns were derived from 70 studies which tested the 
antiNMPDR properties of 850 AgNPs. Data sets II were created by excluding attributes 
with over 20% missing values. The final input data consisted of duration (h), exposure 
dose (μg/mL), Core_size (nm), Zeta_potential (mV) and DLS_size (nm) and reported in 
numeric values. Variables with categorical values included bacteria taxonomical infor-
mation, shape and coating (Figure 2). Changing the coating column to a binary format: 
Coated and Uncoated type was necessary in order to prevent models being overfitted. A 
total of 260 rows and 11 columns are contained in the final dataset. Zeta_potential, 
DLS_size, Dose and Core_Size have the highest percentage of missing values in this new 
dataset. 

 
Figure 2. (A) Scatter plots of predicted vs. actual data points, (B) Heatmap of attribute significance. 

3.2. Model Validation and Attribute Importance Analysis 
The results of modeling reported that the developed model exhibits low MAE and 

MSE (4.5 and 1.6) and R2 equal to 0.73 (Figure 3A). The predicted data points trend is so 
smilar to that of actual ones. Figure 3B presents that ZOI is exteremely dependent on the 
DLS-size, Core-size and exposure dose with the ratios of 0.29, 0.12 and 0.17 respectively. 
But other factors like Zeta_potential and Duration did have any impact on the anti-MDR 
effects of AgNPs. Besides to the impact of physical and chemical features of AgNPs, spe-
cies information of the MDR bacteria is of a great importance too.  
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Figure 3. The level of missing values in dataset I (Left) and dataset II (Right). 

4. Discussion 
A machine learning model was developed in the present investigation. The model 

was subjected to validation to predict the anti-MDR activities of AgNPs correctly. Sucess-
fully, the model is in agreement with OECD rules [21] which suggests (1) a reasonable 
target (ZOI: Zone of Inhibition as an indicator for inhibition of a bacterial growth by 
AgNPs); (2) a developed algorithm (RF model, provided in supplementary file as S1); (3) 
an accurate framework adressing data ranges, nomical and categorical columns and high 
accurate validation scores. Recent investigations have presented that physical and chem-
ical features like core-size [22], morphology [23], surface [24], surface charge [25] and hy-
drodynamic diameter [26] are important factors in determing the antibacterial activities 
of nanoparticles. Exposure dose and duration are among other determing factors [9]. 
Thus, it was needed to collect data about the physical and chemical properties plus expo-
sure conditions. Consequently, numerous missing data occurred almost in all area. It is 
well-known that the regression models can not handle the missing data. The physical and 
chemical properties of a great importance, they should be kept. Another issue is the en-
codig of coating information into uncoated and coated, inibiting the over-fit of model. One 
of the challenges in determing chemical and physical properties is that there is no stand-
ard workflow for obtaining homogenous data which is vital for prediction. The reviewed 
articles gathered information about the anti-MDR activities of AgNPs following various 
strategies. In order to have a homogenous and comprehensive dataset, the characteriza-
tion and antibacterial experiments should follow a standard protocol. To have consistant 
data, only one anti-MDR protocol was selected to gather single formed data. This choice 
confirms the requisite for having a standard anti-MDR method to have a reproducible and 
reliable model development. Random Forest is an effective model for having prediction 
in microbiology and genetics due to its strength for working with multi-dimensional data 
[13]. The results of our study presented a reliable and suitable MSE, MAE and R2 scores 
which are comparable with the results of another RF model for the prediction of antibac-
terial activities of nanoparticles by Mirzaei et al. [9]. There are some strategies for prepro-
cessing stage that help us to normalize data, to transform categorical features to numerical 
like one-hot encoding or handling missing data. There is not ay machine learning study 
specifically on the anti-MDR activities of AgNPs. Up now, antibacterial activities of nano-
particles have been studied with different models [9]. Due to the similar important attrib-
utes in determining antibacterial activities of nanoparticles and anti-MDR activities of 
them, the strategy of the previous studies were chosen. Various studies have reported that 
the DLS-size, dose, Core_size shape and surface area are significant factors [27,28]. Based 
on the researches, the scientists believe the small-sized nanoparticles are more vigorous 
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to penerate the cell wall of bacteria and fight against MDR barriers [29]. Additionaly, it is 
stated in some literatures this is the hydrodynamic diameter of a nanoparticle which is so 
important in revealing antibacterial effects not the core size [26]. Other investigations have 
shown that the antibactrial activities are tightly dependent on the species of the bacteria 
due to the difference in the cell wall structure of a gram-positive and gram-negative spe-
cies [24]. Furthermore, the antibacterial effects are closely dose-dependent. This means: 
high exposure dose leads to better anti-MDR activity [30].  

5. Conclusions 
The microbial resistance against antibiotics has turned to be a big challenge in the 

world. Nnanoparticles exhibit promising antibacterial effects with numerous antibacterial 
mechanisms. At the present investigation, the a machine learning-based model; Random 
Forest was introduced to predict the anti-MDR activities of AgNPs. This is the first step 
in addressing a tool to help the scientists for choosing the best anti-MDR AgNPs and ma-
niupulting the strategies for gaining the best anti-MDR AgNPs along cutting the expenses. 
Due to the presence of numerous gaps in database, it is emphasized to update and set the 
standard measurements.  

Aknowledgements: This research was funded by Alzahra University, Tehran, Iran under a post-
doctoral scholar. 

References 
1. Teixeira, M.C.; Sanchez-Lopez, E.; Espina, M.; Calpena, A.C.; Silva, A.M.; Veiga, F.J.; Garcia, M.L.; Souto, E.B. Advances in 

antibiotic nanotherapy: Overcoming antimicrobial resistance. Emerg. Nanotechnol. Immunol. 2018, 233–259. 
https://doi.org/10.1016/B978-0-323-40016-9.00009-9. 

2. Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013, 56, 1445–1450. 
3. Adeniji, F. Global analysis of strategies to tackle antimicrobial resistance. Int. J. Pharm. Pract. 2018, 26, 85–89. 
4. Gharpure, S.; Akash, A.; Ankamwar, B. A review on antimicrobial properties of metal nanoparticles. J. Nanosci. Nanotechnol. 

2020, 20, 3303–3339. 
5. Basavegowda, N.; Baek, K.-H. Multimetallic nanoparticles as alternative antimicrobial agents: Challenges and perspectives. 

Molecules 2021, 26, 912. 
6. Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against 

drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011, 6, 933–940. 
7. Kotrange, H.; Najda, A.; Bains, A.; Gruszecki, R.; Chawla, P.; Tosif, M.M. Metal and metal oxide nanoparticle as a novel 

antibiotic carrier for the direct delivery of antibiotics. Int. J. Mol. Sci. 2021, 22, 9596. 
8. Dove, A.S.; Dzurny, D.I.; Dees, W.R.; Qin, N.; Nunez Rodriguez, C.C.; Alt, L.A.; Ellward, G.L.; Best, J.A.; Rudawski, N.G.; Fujii, 

K. Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria. Front. Microbiol. 2023, 13, 
1064095. 

9. Mirzaei, M.; Furxhi, I.; Murphy, F. A Machine Learning Tool to Predict the Antibacterial Capacity of Nanoparticles. Nanomateri-
als 2021, 11, 1774. 

10. Goldberg, E.; Scheringer, M.; Bucheli, T.D.; Hungerbühler, K. Prediction of nanoparticle transport behavior from 
physicochemical properties: Machine learning provides insights to guide the next generation of transport models. Environ. Sci. 
Nano 2015, 2, 352–360. 

11. Das, K.P.; Chandra, J. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: 
Current progress and challenges. Front. Med. Technol. 2022, 4, 1067144. 

12. Lin, Z.; Chou, W.-C.; Cheng, Y.-H.; He, C.; Monteiro-Riviere, N.A.; Riviere, J.E. Predicting nanoparticle delivery to tumors using 
machine learning and artificial intelligence approaches. Int. J. Nanomed. 2022, 17, 1365–1379. 

13. Mirzaei, M.; Furxhi, I.; Murphy, F.; Mullins, M. A supervised machine-learning prediction of textile’s antimicrobial capacity 
coated with nanomaterials. Coatings 2021, 11, 1532. 

14. Saadat, A.; Dehghani Varniab, A.; Madani, S.M. Prediction of the Antibacterial Activity of the Green Synthesized Silver 
Nanoparticles against Gram Negative and Positive Bacteria by using Machine Learning Algorithms. J. Nanomater. 2022, 2022, 
4986826. 

15. Polli, J.E. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing 
bioequivalence of immediate-release solid oral dosage forms. AAPS J. 2008, 10, 289–299. 

16. Beale, E.M.L.; Little, R.J.A. Missing values in multivariate analysis. J. R. Stat. Soc. Ser. B 1975, 37, 129–145. 
17. Potdar, K.; Pardawala, T.S.; Pai, C.D. A comparative study of categorical variable encoding techniques for neural network 

classifiers. Int. J. Comput. Appl. 2017, 175, 7–9. 



Chem. Proc. 2023, 14, x FOR PEER REVIEW 7 of 7 
 

 

18. Ali, P.J.M.; Faraj, R.H.; Koya, E.; Ali, P.J.M.; Faraj, R.H. Data normalization and standardization: A technical report. Mach. Learn. 
Tech. Rep. 2014, 1, 1–6. 

19. Qi, Y. Random forest for bioinformatics. In Ensemble Machine Learning; Springer: New York, NY, USA, 2012; pp. 307–323. 
20. Mirzaei, M.; Furxhi, I.; Murphy, F.; Mullins, M. Employing Supervised Algorithms for the Prediction of Nanomaterial’s 

Antioxidant Efficiency. Int. J. Mol. Sci. 2023, 24, 2792. 
21. OECD, O. Environment health and safety publications series on testing and assessment No. 69, Guidance document on the 

validation of (quantitative) structure-activity relationships [(Q) SAR] models 2007. 
22. Saeed, B.A.; Lim, V.; Yusof, N.A.; Khor, K.Z.; Rahman, H.S.; Abdul Samad, N. Antiangiogenic properties of nanoparticles: A 

systematic review. Int. J. Nanomed. 2019, 14, 5135–5146. 
23. Cheon, J.Y.; Kim, S.J.; Rhee, Y.H.; Kwon, O.H.; Park, W.H. Shape-dependent antimicrobial activities of silver nanoparticles. Int. 

J. Nanomed. 2019, 14, 2773–2780. 
24. Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. 

Nanomed. 2017, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956. 
25. Maillard, A.P.V.F.; Espeche, J.C.; Maturana, P.; Cutro, A.C.; Hollmann, A. Zeta potential beyond materials science: Applications 

to bacterial systems and to the development of novel antimicrobials. Biochim. Biophys. Acta (BBA)-Biomembranes 2021, 1863, 
183597. 

26. Khurana, C.; Vala, A.K.; Andhariya, N.; Pandey, O.P.; Chudasama, B. Antibacterial activity of silver: The role of hydrodynamic 
particle size at nanoscale. J. Biomed. Mater. Res. Part A 2014, 102, 3361–3368. 

27. Huq, M.A. Green Synthesis of Silver Nanoparticles Using Pseudoduganella eburnea MAHUQ-39 and Their Antimicrobial 
Mechanisms Investigation against Drug Resistant Human Pathogens. Int. J. Mol. Sci. 2020, 21, 1510. 
https://doi.org/10.3390/ijms21041510. 

28. Krishna, P.G.; Chandra Mishra, P.; Naika, M.M.; Gadewar, M.; Ananthaswamy, P.P.; Rao, S.; Boselin Prabhu, S.R.; Yatish, K.V.; 
Nagendra, H.G.; Moustafa, M.; et al. Photocatalytic Activity Induced by Metal Nanoparticles Synthesized by Sustainable 
Approaches: A Comprehensive Review. Front. Chem. 2022, 10, 917831. 

29. Menichetti, A.; Mavridi-Printezi, A.; Mordini, D.; Montalti, M. Effect of Size, Shape and Surface Functionalization on the 
Antibacterial Activity of Silver Nanoparticles. J. Funct. Biomater. 2023, 14, 244. 

30. Pazos-Ortiz, E.; Roque-Ruiz, J.H.; Hinojos-Márquez, E.A.; López-Esparza, J.; Donohué-Cornejo, A.; Cuevas-González, J.C.; 
Espinosa-Cristóbal, L.F.; Reyes-López, S.Y. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone 
fibers against gram-positive and gram-negative bacteria. J. Nanomater. 2017, 2017, 4752314. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


