

Synthesis of a Hybrid Molecule Based on Biologically Active 5Z,9Z-Eicosadienoic Acid and Vanillin ⁺

Elina Kh. Makarova 1,*, Alexey A. Makarov 1, Lilya U. Dzhemileva 2 and Usein M. Dzhemilev 2

- ¹ Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russia; makarovalexink@gmail.com
- ² N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; email1@email.com (L.U.D.); email2@email.com (U.M.D.)
- * Correspondence: makarovaelina87@gmail.com
- ⁺ Presented at the 27th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-27), 15– 30 November 2023; Available online: https://ecsoc-27.sciforum.net/.

Abstract: A hybrid compound based on (5Z,9Z)-eicosa-5,9-dienoic acid and vanillin was synthesized in high yield (94%) using a new intermolecular cross-cyclomagnesiation reaction of aliphatic and O-containing 1,2-dienes catalyzed by Cp₂TiCl₂.

Keywords: 1,2-dienes; cross-cyclomagnesiation; vanillin

1. Introduction

Vanillin (4-hydroxy-3-methoxybenzaldehyde) isolated from orchids (*Vanilla planifolia, V. pompona* or *V. tahitiensis*) is attracting attention for several reasons. First, vanillin as a flavoring agent is using in the food, nutraceutical, and pharmaceutical industries. Secondly, vanillin has a simple chemical structure, which can simplify its synthesis to some extent. Third, vanillin has been shown to have of biological activities, such as antitumor, antioxidant, and antimicrobial [1,2]. In addition, vanillin exhibits a neuroprotective effect in an experimental model of Huntington's disease and ischemia [3].

An analysis of the literature showed that vanillin derivatives also exhibit versatile biological activity. In the studies of Boiko Y. A.; the analgesic and anti-inflammatory activity of vanillin and its derivatives was established, which is associated with the effect of these substances on the TRPA-1 and TRPV-1 ion channels [4]. Scipioni M. and colleagues synthesized a number of vanillin derivatives and simultaneously demonstrated that their antioxidant activity is similar to the reference antioxidant Trolox [5]. Vanillin derivatives have a high antioxidant potential and a protective effect against oxidative stress in neuroblastoma cells [6]. Li's research group reported the synthesis of a number of dendrimers from vanillin that have antioxidant properties and protective effects on fatty acids, DNA and lipoproteins [7]. Vanillin derivatives are also used as multipurpose drugs for the treatment of atopic dermatitis with positive pharmacokinetic and pharmacodynamic results. Mourtzinos and colleagues have shown that carboxylic acid obtained by oxidation of vanillin increases its antibacterial effect [8].

Given the high biomedical potential of vanillin derivatives, we put forward the idea of synthesizing a hybrid compound based on 5Z,9Z-eicosa-5,9-dienoic acid and vanillin. We have previously shown that (5Z,9Z)-eicosa-5,9-dienoic acid has a high inhibitory activity of topoisomerases I (hTop1) and II (hTop2 α) in vitro [9,10].

2. Results and Discussion

Using the reaction of cross-molecular cyclomagnesiation of trideca-1,2-diene **1** with 2-(hepta-5,6-dien-1-yloxy)tetrahydro-2H-pyran **2** with EtMgBr in the presence of a

Citation: Makarova, E.K.; Makarov, A.A.; Dzhemileva, L.U.; Dzhemilev, U.M. Synthesis of a Hybrid Molecule Based on Biologically Active 5Z,9Z-Eicosadienoic Acid and Vanillin. *Chem. Proc.* **2023**, *14*, x. https://doi.org/10.3390/xxxxx

Academic Editor(s): Name

Published: 10 November 2023

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/). Cp₂TiCl₂ catalyst gave 2,5-dialkylidenemagnezacyclopentane **3**. Acid hydrolysis of the cyclomagnesiation product **3** and oxidation of the formed tetrahydropyranyl ether 5Z with the Jones reagent, 9Z-diene **4** leads to 5Z,9Z-eicosadienoic acid **5**. The esterification reaction of (5Z,9Z)-eicosa-5,9-dienoic acid **5** with vanillin **6** was carried out in CH₂Cl₂ at 0°C in the presence of 4-dimethylaminopyridine and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, as a result, the target product was obtained with a yield of 94% (Scheme 1).

Реагенты и условия: *i*. Cp₂TiCl₂ (5 мол.%), EtMgBr (2 экв), Mg (2 экв), TГФ, 20-22 °C, 10 ч; *ii*. HCl 5%, выход 72-86%; *iii*. реагент Джонса; *iv*. DMAP, DCC, CH₂Cl₂ 2 ч, 0 °C.

Scheme 1. Synthesis of a hybrid compound based on (5Z,9Z)-eicosa-5,9-dienoic acid and vanillin.

3. Conclusions

Thus, we have synthesized a hybrid compound based on natural biologically active (5Z,9Z)-eicosa-5,9-dienoic acid and vanillin in high yield (94%), using at the key stage a new reaction of intermolecular cross-cyclomagnesiation of aliphatic and O-containing 1,2-dienes catalyzed by Cp₂TiCl₂.

4. Experimental Part

4-formyl-3-methoxyphenyl (**5Z,9Z**)-icosa-5,9-dienoate (**7**). ¹H NMR (400 MHz, CDCl₃) δ: 0.90 (t, *J* = 6.6 Hz, 3H), 1.45–1.28 (m, 16H), 2.03–1.77 (m, 2H), 2.22–2.12 (m, 8H), 265–2.60 (m, 2H), 3.91 (s, 3H), 5.51–5.34 (m, 4H), 7.51–7.20 (m, 3H), 9.96 (s, 1H). ¹³C NMR (100.62 MHz, CDCl₃) δ: 191.03, 171.23, 152.01, 145.08, 135.16, 130.72, 130.60, 128.90, 128.62, 124.75, 123.42, 110.79, 56.04, 33.35, 31.92, 29.74, 29.65, 29.57, 29.50, 29.35, 29.27, 29.03, 27.42, 27.30, 24.85, 22.69, 14.12. MS (MALDI-TOF), *m/z*: 442 [M]⁺. C₂₈H₄₂O₄. Found (%): C 75.79; H 9.41.Calcd for C₂₈H₄₂O₄ (%): C 75.98; H 9.56.

Funding: The results were obtained was supported by the budget of the Russian Ministry of Education and Science.

References

- Sinha, A.K.; Sharma, U.K.; Sharma, N. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. *Int. J. Food Sci. Nutr.* 2008, *59*, 299–326. https://doi.org/10.1080/09687630701539350.
- Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Ueckert, J.; Bos, A.; Narbad, A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plant and Listeria innocua. J. Appl. Microbiol. 2004, 97, 104–133. https://doi.org/10.1111/j.1365-2672.2004.02275.x.
- Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Narbad, A. Structure-function analysis of the vanillin molecule and its antifungal properties. J. Agric. Food Chem. 2005, 53, 1769–1775S. https://doi.org/10.1021/jf048575t.

- 4. Gupta, B.; Sharma, B. Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington's disease. *Pharmacol. Biochem. Behav.* **2014**, *122*, 122–135. https://doi.org/10.1016/j.pbb.2014.03.022.
- Scipioni, M.; Kay, G.; Megson, I.; Kong Thoo Lin, P. Synthesis of novel vanillin derivatives: Novel multi-targeted scaffold ligands against Alzheimer's diseaseµµ. *MedChemComm* 2019, 10, 764–777. https://doi.org/10.1039/c9md00048h.
- Blaikie, L.; Kay, G.; Kong Thoo Lin, P. Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer's disease. *Bioorganic Med. Chem. Lett.* 2020, 30, 127505. https://doi.org/10.1016/j.bmcl.2020.127505.
- 7. Lee, C.Y.; Sharma, A.; Uzarski, R.L.; Cheong, J.E.; Xu, H.; Held, R.A.; Upadhaya, S.K.; Nelson, J.L. Potent antioxidant dendrimers lacking pro-oxidant activity. Free Radical *Biol. Med.* **2011**, *50*, 918–925. https://doi.org/10.1016/j.freeradbiomed.2010.10.699.
- 8. Mourtzinos, I.; Konteles, S.; Kalogeropoulos, N.; Karathanos, V.T. Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties. *Food Chem.* **2009**, *114*, 791–797. https://doi.org/10.1016/j.foodchem.2008.10.014.
- D'yakonov, V.A.; Makarov, A.A.; Dzhemileva, L.U.; Makarova, E. Kh., Khusnutdinova, E.K.; Dzhemilev, U.M. The facile synthesis of the 5Z,9Z-dienoic acids and their topoisomerase I inhibitory activity. *Chem. Commun.* 2013, 49, 8401–8403. https://doi.org/10.1039/C3CC44926B.
- D'yakonov, V.A.; Dzhemileva, L.U.; Makarov, A.A.; Mulyukova, A.R.; Baev, D.S.; Khusnutdinova, E.K.; Tolstikova, T.G.; Dzhemilev, U.M. nZ,(n+4)Z-Dienoic Fatty Acids: A New Method for the Synthesis and Inhibitory Action on Topoisomerase I and Iiα. *Medicinal Chemistry Research*, 2016, 25, 30–39. https://doi.org/10.1007/s00044-015-1446-1.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.