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Abstract: Physiological stress in healthy subjects was assessed using heart rate (HR) monitored with 
help of Hexoskin smart garments. The HR was collected in daily life activity and in laboratory 
settings during stress tests. Heart rate variability parameters were computed and referenced with 
expert level of stress. The data were processed with help of Machine Learning Algorithms (Random 
Forest, CatBoost, XGB, LGBM, SVR). The Random Forest Regressor provided the best rate of correct 
entries (86%), and the CatBoost Regressor—the shortest time (2 ms) for assessment of the stress level. 
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1. Introduction 
Stress is a multisystem compensatory response of the body to external and internal 

stimuli (stressors) [1,2], and it evolved to preserve the constancy of its vital parameters, or 
homeostasis [1,2]. The response to stressors is represented by the intensification of 
metabolism due to changes in hormonal, autonomic, nervous and motor functions [1]. 
The reaction to stress is characterized by stages [1,2] and several levels of its intensity [3]. 
Despite its originally protective nature, stress can lead to functional “over taxation” [1] 
and dysregulation of stress-sensitive systems—nervous, cardiovascular, gastrointestinal, 
and immune [1,4]. Stress can significantly reduce such indicators of human well-being as 
working capacity, quality of life, personal capital, and social adaptation. Thus, 
instrumental assessment, control, prediction, and prevention of stress is recognized as 
critical scientific problem [1,5]. To address this problem, informative biosignal-based 
markers of stress must be identified [5]. 

2. Theory 
Several groups of stress markers have been proposed, e.g., psychophysiological, 

autonomic, and cognitive, as well as blood and saliva tests for hormones [5–9]. The 
autonomic markers, e.g., skin sympathetic response, pupil response, and heart rate 
variability (HRV) attract growing attention [6,9–13]. For example, time- and frequency-
domain parameters of HRV are promising for assessing the level of stress [9]. Nonlinear 
parameters (dimension and entropy) of HRV are increasingly being used to detect 
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disorder of autonomic nervous system [13], what can be used to assess stress. Textile 
sensors (“smart clothing” technologies) are suitable for monitoring physiological 
functions in daily life mode. Typically, HRV, temperature, respiratory rate, skin 
sympathetic response, and motility are measured with textile sensors. The search for 
stress markers can be carried out with help of Machine Learning (ML) algorithms, which 
are especially well suited for nonlinear metrics [14]. In this study, we aimed to assess the 
stress level with HRV markers in healthy individuals in their daily activities using HRV 
parameters obtained from smart clothing sensors, and treated with ML algorithm 
technologies. The Hexoskin Smart Shirt was chosen for smart clothing because there are 
reports that it provides reliable HR signal [15,16]. 

3. Experimental 
3.1. Subjects and Protocol 

19 practically healthy subjects, aged 19 to 55 years, volunteered to participate in the 
study. All subjects signed their informed consent before the study. The study protocol was 
approved by joint Ethic committee of the Ministry of Health care of the Republic of Karelia 
and Petrozavodsk State University (No. 30, 16 June 2014). The whole study was conducted 
within the time period November 2021–January 2022, in the city of Petrozavodsk 
(Republic of Karelia, Russia). The study was conducted in two settings. In the laboratory 
(15 subjects), three conventional tests were used to induce stress: (1) reaction time tests 
(simple and choice reaction time, manual target interception) (detailed in [17]), (2) 
physical exercise (3 min of pedaling on an ergometer with growing load [7]), (3) cold press 
test (CPT) [7] (3-min immersion of a hand in ice water at 3–4 °C, detailed in [18]). Rest, 
“without stress”, conditions were used for comparisons. A total of 10 different conditions 
were applied, in a mixed order, within two or three individual days. The HR data was 
obtained either with laboratory instruments (VNS-Spectr, Neirosoft, Ivanovo, Russia) or 
Hexoskin Smart Shirt.  

In field conditions, eight subjects practiced their daily life activities (25 individual 
measurements), which included walking in- and outdoors, mental activities (PC- and 
Internet-based, sitting, phone calling), taking meals (including coffee), sleeping, visiting a 
fitness center, driving a car, visiting a dental clinic, etc. All subjects were making records 
of their activity in a form, with 15-min intervals. In different trials, measurement lasted 2 
to 12 h, depending on the will of a subject. The data was collected only with Hexoskin 
Smart Shirt.  

Momentarily perceived stress was assessed with visual analogue scale (VAS) [4,7,19]. 
In VAS, the left end (value “1”) corresponded to “no stress at all” condition and the right 
end (value “10”—to maximal “perceived stress”). The VAS was administered at each of 
the 10 experimental conditions. In field conditions, subjects marked the level of their 
momentarily perceived stress with VAS every 15 min. 

3.2. Data Acquisition with Smart Clothes 
HR was collected by the Hexoskin Smart Shirt (Hexoskin Smart Sensors & AI, 

Montreal, QC,  Canada). It was put on the subject according to instructions, and 
connected to the logger. After the experiment, data was uploaded into the HxServices 
(v.4.05) software (Figure 1). 
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Figure 1. A representative HR signal recorded with Hexoskin Smart Shirt in field conditions. 

3.3. HR Data Processing 
Hexoskin Smart Shirt provides a wav sound file. This format is convenient for 

processing in terms of ready-made libraries of the Python language. To extract signal 
peaks from a wav file, the ecg_peaks function of the neurokit2 library [20] was used. With 
a known value of the pulse frequency (for HxS it is 256 Hz), the value of the time between 
the peaks was computed, which allowed calculating the values of the intervals between 
neighboring R waves (RR interval, RRi). The resulting data set of RRi was filtered with 
cutoff HR values < 45 and >180 beat per min. After that, each time series of a trial was 
subdivided into 3-min serial segments. Then, HRV parameters were calculated for each of 
the segments with help of the pyHRV toolbox [21]. Each segment was labeled with the 
expert level of perceived stress marked by individual subjects with VAS, in one dimension. 

The time-domain HRV parameters included HR (hr_mean), standard deviation 
(sdnn), root mean squared difference (rmssd), and proportion of successive intervals 
greater than 50 ms (pnn50) of normal RR intervals (nni). The frequency-domain HRV 
parameters included the total power spectrum of RRi (fft_total), power spectrum at very 
low (vlf; <0.04 Hz), low (lf; 0.04–0.15 Hz), and high frequency bands (hf; 0.15–0.40 Hz), 
and spectrum structure (vlf_pct, lf_pct, hf_pct, lf_nu, hf_nu). Nonlinear parameters 
included sample (sampen) and approximate entropy (apen), and sd1 and sd2 of the 
Poincare plot. 

Altogether, 11,570 segments were available in the data set for analysis. Table 1 shows 
the distribution of the number of records corresponding to 10 different levels of stress. Of 
11,570 segments over 53% segments had the stress level “2”, 17%—the level “3”, with 
further systematic decrement to levels “7–9” (some 1%) and 10 (0%). Of the whole data 
set, 75% segments were randomly assigned to the “training” set, and remaining 25%—to 
the “test” set (Table 1). 

Table 1. Distribution of segments among the data sets and their reference to the level stress. 

Stress Level Number of  
Segments 

Number of Segments 
in the Training Set 

Number of Segments 
in the Test Set 

1 577 433 144 
2 6225 4669 1556 
3 2051 1538 513 
4 1140 855 285 
5 584 438 146 
6 530 397 133 
7 155 116 39 
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8 184 138 46 
9 124 93 31 

10 0 0 0 
Total number of records 11570 8677 2893 

The calculated parameters were checked for correlation. In the matrix in Figure 2, 
there is a strong correlation dependence for some pairs of features, which necessitates the 
selection of significant features. For the regression model for predicting the level of stress, 
the final set of features was formed from 11 features: pnn50, nni_mean, hr_mean, sd1, sd2, 
sampen, lf_pct, hf, lf, vlf, hf_pct. The CatBoost Regressor with the random_state = 42 
parameter was used as the regression algorithm. The rest of the algorithm parameters had 
default values. 

 
Figure 2. Correlation of features in the data set with the original set of features. 

To reduce the dimension of the input data and the error metrics, the following 
algorithm for selecting significant features was developed: 
• The CatBoost Regressor model was trained on data containing all available features. 
• Using the get_feature_importance method from the CatBoost library [22] for the 

Python language, we obtain an array of feature significance scores for the model, the 
score values are sorted in descending order. 

• An empty current feature set, an empty final feature set, and a minimum mean 
absolute error (MAE) are initialized, which is initially set to infinity. 

• The model is iteratively trained and tested on fixed training and test sets. 
• The next feature is added to the current set of features in descending order of 

significance for the model. 
• The model is trained on the current set of features; MAE is calculated on the test set 

of records with the current set of features. 
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If the obtained MAE value is less than the current minimum MAE value, then the 
considered feature is stored in the final feature set, and the minimum MAE value becomes 
equal to the current one, otherwise the considered feature is not stored in the final feature 
set.  

For the regression model for predicting the level of stress, the final set of features was 
formed from 11 features: pnn50, nni_mean, hr_mean, sd1, sd2, sampen, lf_pct, hf, lf, vlf, 
hf_pct. The test was carried out for five types of modes: Random Forestv Regressor, 
CatBoost Regressor, XGBoost Regressor, LightGBM Regressor, and Support Vector 
Regressor. 

4. Results 
The final outcome is presented in Table 2. As can be seen from the Table 2, Random 

Forest Regressor algorithm provided the highest % of correct entries (86.3%). From the 
other hand, the shortest execution time was produced by the CatBoost Regressor 
algorithm, which was the second best in terms of correct entries.  

Table 2. Stress level regression quality metrics provided by different algorithms. 

Method MAE R2 Target Variable Prediction 
Time for One Record, ms 

Number of Correct 
Entries, % 

RandomForestRegressor 
(random_state = 42) 0.0018 0.9992 8.48 86.3 

CatBoostRegressor 
(random_state = 42 0.0822 0.975 2.02 85.3 

XGBRegressor 
(random_state = 42) 

0.0837 0.9719 4.63 80.1 

LGBMRegressor 
(random_state = 42) 

0.1628 0.9044 1.97 82.9 

SVR(kernel = �rbf�) 0.3913 0.4503 29.93 64.1 

5. Conclusions 
In conclusion, given the quality of the outcome and prediction time value, the 

CatBoost Regressor algorithm can be regarded as the reliable algorithm for the assessment 
of the stress level with HRV parameters obtained with a “smart clothing” device. We also 
conclude that 85–86% rates of correct entries (correct linking of HRV parameters to the 
level of stress) looks promising. Still, one sound limitation can be identified to the study. 
Namely, the diversity of the level of stress was not high enough in this study, as more 
than 70% segments were referenced to the stress level 2–3, which means “low stress”. In 
future studies, longer periods of HR monitoring with textile sensors would be reliable. 
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