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Abstract: In this paper we developed ensemble classifiers with SpO2 signals for sleep apnea screen-
ing. The ensemble classifiers (eclf) are built on top of five base classifiers, including logistic regres-
sion (LR), random forest (RF), support vector machine (SVM), linear discrimination analysis (LDA), 
and light gradient boosting machine (LGMB). Performance evaluation showed that when heavier 
weights were assigned to the LR and SVM classifiers, the eclf achieved a better balance between 
sensitivity (0.81 ± 0.02) and specificity (0.80 ± 0.02) while maintaining the overall performance as 
measured by AUC (0.81 ± 0.01). 
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1. Introduction 
Due to lifestyle changes, more and more people are suffering sleep disorders nowa-

days. Among all the different types of sleep disorders, sleep apnea is a most common one 
around the globe. Sleep apnea is characterized by brief stops of breathing during sleep. If 
that happens on average more than 5 times per hour throughout the night, then the person 
is clinically considered sleep apnea positive. Sleep apnea is often accompanied by snoring 
during sleep and excessive day-time sleepiness. The long-term consequence of untreated 
sleep apnea includes increased risks of cardiovascular diseases, metabolic disorders, men-
tal problems, and cognitive impairment [1]. Developing sleep apnea screening methods 
that are easy to use at home has been the objective of many studies. The main challenge 
of home sleep apnea screening is that most of the signal modalities in medical settings, 
such as EEG, ECG, breath effort, is not readily measurable with home-use sensors. To 
address this challenge, several studies have attempted to develop apnea screening meth-
ods based solely on the blood oxygen levels, or SpO2, during sleep. This signal modality 
is ideal for home sleep apnea screening because it can be collected using consumer sleep 
tracking gadgets with reasonable accuracy [2–4]. This study aims to develop ensemble 
classifiers that takes the SpO2 signals as input to predict whether a user is sleep apnea 
positive or negative. 

2. Related Work 
Polysomnography (PSG) is the gold standard for sleep apnea diagnosis. A PSG test 

measures many physiological signals which allow doctors to calculate the apnea-hypop-
nea index (AHI), defined as the average number of obstructive respiratory events oc-
curred per hour during sleep, for diagnosing sleep apnea. An AHI of larger than 5 
events/h is considered out of the normal range and thus sleep apnea positive. Other AHI 
cutoff thresholds such as 15 and 30 are also widely used to determine the severity of sleep 
apnea [5]. PSG test is expensive, invasive and is not always available. Many studies have 
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attempted to develop alternative methods for sleep apnea screening using information 
stored in medical records. Instead of using physiological signals, those methods rely on 
information such as demographic characteristics, blood test, and questionnaire scores to 
assess the likelihood for sleep apnea positive [6]. In a related vein, machine learning and 
deep learning models that uses SpO2 signals for sleep apnea screening were also devel-
oped. While early works used only small datasets for model development [7], a very re-
cent publication trained and tested their models on several large datasets [8]. In this study, 
we developed and validated our models using one of the largest sleep datasets. 

3. Methodology 
In this section we present the pipeline for developing the ensemble classifier for sleep 

apneas screening and the dataset used. Signal processing and machine learning were per-
formed using Python 3.10.5. Several Python modules were used, including Numpy, Pan-
das, Matplotlib, Scikit-learn, and Scipy. 

3.1. Dataset 
The Sleep Heart Health Study (SHHS) dataset used in this study consists of multi-

modal physiological signals collected from 5786 subjects during sleep [9]. Permission was 
granted from the National Sleep Research Resource (NSRR) to export the SpO2 signals as 
well as some demographic information (i.e., age, gender, BMI) from the dataset. Data us-
age is this study was compliant with the Data Assess and Use Agreement (DAUA). The 
SpO2 signals were preprocessed to remove readings of zeros, below 50% or above 100%. 
Sudden changes between consecutive readings (>4%) were also removed. The 
‘nsrr_ahi_ph3r_aasm15′ variable was used as the ground truth values for AHI. 

3.2. Ensemble Classifier 
Ensemble is a method in machine learning that combines multiple base classifiers to 

improve the performance of the classifications. In this study we used five base classifiers, 
including linear regression (LR), random forest (RF), support vector machine (SVM), lin-
ear discrimination analysis (LDA), and light gradient boosting machine (LGMB). The final 
output of an ensemble classifier is the most frequently occurring label (i.e., the mode) of 
the weighted outputs of the based classifiers. Let 𝑓ோ, 𝑓ோி, 𝑓ௌெ, 𝑓, 𝑓ீெ be the 5 base 
classifiers, the final output of the ensemble classifiers 𝑓 is calculated using Equation 
(1). We built two ensemble classifiers, 𝑓ଵ uses a weight vector of [1, 1, 1, 1, 1] while 𝑓ଶ uses a weight vector of [2, 1, 2, 1, 1]. We assigned heavier weights to the LR and 
SVM classifiers in the latter case because those two classifiers yielded better performance 
in our previous study [10]. 𝑓 = mode(𝑤ோ ∙ 𝑓ோ, 𝑤ோி ∙ 𝑓ோி, 𝑤ௌெ ∙ 𝑓ௌெ,𝑤 ∙ 𝑓,𝑤ீெ ∙ 𝑓ீெ), (1) 

Following the common practice in machine learning, 80% of the dataset was used for 
model training and tuning, and the rest was used for model testing. Hyper-parameter 
tuning achieved through 5-fold cross validation. Classifier performances were measured 
using AUC, sensitivity, specificity. We repeated the dataset split 50 times with different 
random seeds. Boxplots were generated to show the distribution of the performance 
measures over the 50 repetitions. 

4. Result 
The AUC, sensitivity, and specificity of the base classifiers and the ensemble classifi-

ers are shown in Figures 1–3. It is shown that among the five base classifiers, LR achieved 
the highest AUC and specificity. RF had the highest sensitivity but the lowest specificity, 
which translated to the lowest AUC among all base classifiers. Compared to ECLF, ECLF2 
had similar AUC to LR but a better trade-off between sensitivity and specificity. 
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Figure 1. Performance of the classifiers for sleep apnea screening (AUC). 

 
Figure 2. Performance of the classifiers for sleep apnea screening (sensitivity). 

 
Figure 3. Performance of the classifiers for sleep apnea screening (specificity). 

5. Discussion 
We have presented the development and validation of ensemble classifiers with hard 

voting for sleep apnea screening. Performance evaluation analysis showed that when 
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heavier weights were assigned to the LR and SVM classifiers, the ECLF achieved a better 
balance between sensitivity (0.81 ± 0.02) and specificity (0.80 ± 0.02) while maintaining the 
overall performance as measured by AUC (0.81 ± 0.01). RF and LDA achieved high sensi-
tivity (>0.95) at the sacrifice of specificity, while LR and SVM achieved high specificity 
(>0.80) at the sacrifice of sensitivity. LGMB demonstrated mediocre performance on both 
sensitivity and specificity. In our future work we plan to apply other ensemble techniques 
such as soft voting and to tune the weights given to the base classifiers. 
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