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Abstract: Climate change has directly impacted Earth's habitats, resulting in various adverse effects, 

such as the desiccation of water bodies. The process of identifying such changes through field ob-

servations is time-consuming and costly. By using remote sensing techniques, it has become easier 

than ever to monitor changes in the environment. Radar satellites, unlike optics, can acquire data in 

all weather conditions and regardless of the time of day. These data can provide valuable infor-

mation about the environment and surface roughness. Various methods have been proposed for 

detecting changes, which can be divided into classic and deep learning methods. Classic methods 

only use image information, such as radar backscatter, which cannot extract spatial information. 

Sentinel-1 (S1) is an Earth observation radar sensor that provides free access to SAR (Synthetic Ap-

erture Radar) images. This study aims to compare the performance of two classic methods, a Ratio 

Index (RI) and Markov Random Field (MRF), with deep learning networks in detecting changes. As 

a deep network, Inception CNN (convolutional neural network) is presented as an enhancement of 

the original CNN to detect the changes. To evaluate methods, two times of S1 images from Lake 

Poopó, located in the Altiplano Mountains in Oruro Department, Bolivia, are used as a primary 

dataset. The results of the comparison models were assessed using three evaluation metrics: Overall 

Accuracy (O.A), Missed Error (M.E), and Kappa Coefficient (K). Based on the evaluations, the In-

ception CNN performed exceptionally in all metrics, with O.A, K, and M.E rates of 97.35%, 90.28%, 

and 9%, respectively. Meanwhile, the ratio index had poor performance, with 83.27%, 29.05%, and 

75.03%, respectively, for O.A, K, and M.E. These results indicated that the Inception CNN could 

provide better performance in detecting changes from S1 images. 

Keywords: inception; convolutional neural network; Markov Random Field; synthetic aperture ra-

dar; waterbody 

 

1. Introduction 

Climate changes have significantly influenced human and animal habitats. As an il-

lustration of these changes, one notable example is the reduction in the widths of water 

zones. Identifying changes in water zones is crucial for making informed decisions in en-

vironmental protection and management [1]. Identification of such changes through field 

observations is time-consuming and expensive. The utilization of remote sensing tech-

niques has significantly facilitated the monitoring of changes, surpassing the challenges 

encountered in the past. Remote sensing images provide great information from the 

Earth's surfaces [2]. Unlike optical satellites, radar satellites can acquire data in all weather 

conditions, day and night. These data are sensitive to surface roughness and can provide 
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comprehensive information about the environment. Water zones exhibit minimal surface 

roughness, particularly in the absence of strong winds, resulting in their appearance as 

dark areas in radar images [3]. In remote sensing, detecting algorithms can be classified 

into two groups: classical methods and deep learning models. 

Classical methods rely on backscattered information, often leading to unsatisfactory 

results with low accuracy. Liang et al. [4] presented a new local hierarchical regional 

thresholding method for describing water using SAR images. Zhang et al. [5] have intro-

duced a novel approach to assessing flood extent using multi-temporal Sentinel-1 data. 

An automatic thresholding procedure generates an initial land and water classification. 

Then, a fuzzy logic-based method refines the initial classification. Experiments demon-

strate that using different polarizations as image bands cannot provide better results. To 

tackle this issue, incorporating contextual information enhances the accuracy and reliabil-

ity of the classification outcomes [6]. Wang et al. [7] combined the threshold segmentation 

method with Markov random fields (MRF) and integrated simulated annealing (SA) into 

the process of image noise reduction. As a result, a water extraction method demonstrates 

high accuracy in classification. In another study, Song et al. [8] introduced a method for 

selecting features from SAR images, which relied on the correlation of sparse coefficients. 

The aim was to enhance the precision of change detection (CD). However, these conven-

tional methods still need to be improved in extracting spatial information properly. 

Deep learning models have the advantage of effectively extracting spectral infor-

mation without being constrained by the limitations of classical approaches. In their paper, 

Aghdami-Nia et al. [9] developed an automatic coastline extraction framework by modi-

fying the Standard U-Net model to enhance sea-land segmentation. In another study, Lin 

et al. [10] proposed a novel approach utilizing a Fully Convolutional Neural Network to 

detect water in Sentinel-1 SAR images accurately. The overall detection performance is 

enhanced by incorporating the spatial information of neighboring pixels and analyzing 

the corresponding pixel intensities. 

The performance of classical methods and deep networks in CD using Sentinel-1 im-

ages has been investigated to determine which approach yields superior results. In this 

study, the Ratio Index (RI) is employed as a fundamental classical method, while the MRF 

is utilized as an enhanced version of these methods. In addition, an improved form of 

CNN called Inception CNN is introduced as a deep network to detect waterbody changes 

effectively. This network can consider the different scales of image objects within the net-

work. 

The structure of the current investigation is as follows: The second section introduces 

the research methodology. Section 3 presents the experimental result. Finally, in section 4, 

we summarize the conclusions. 

2. Methodology 

In this section, we present the three mentioned CD methods. An overview of the 

workflow is shown in Figure 1. 

 

Figure 1. The flowchart of generating change results (CD stands for Change Detection). 

Figure 1 illustrates the stepwise process of CD. In general, the research method has 

four steps. Initially, the images undergo preprocessing, including geocoding, radiometric 
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calibration, and filtering using the Lee Sigma filter. Afterward, the preprocessed images 

are subjected to three methods to produce the desired difference image. The final step is 

to evaluate the change maps created. In the following sections, these methods will be in-

troduced in detail. 

2.1. Ratio Index 

If we let 𝐼𝑡1 and 𝐼𝑡2 represent the SAR intensity images in t1 and t2 times, the RI, 

which looks like a log ratio index, can be defined as follows: 

RI=log ((𝐼𝑡1+eps)/(𝐼𝑡2+eps)) (1) 

where eps represents a minimal decimal value, it refers to a small constant value known 

as "epsilon" or "small parameter." This parameter is employed to avoid computational 

issues arising from division by zero. The equation's robustness and results are improved, 

especially when the values of 𝐼𝑡1 and 𝐼𝑡2 tend towards zero. This study sets eps to 5, and 

the Otsu thresholding technique is employed [11] to generate the change map. 

2.2. MRF 

The MRF algorithm is an influential image-processing technique employed to model 

and analyze intricate structures within images. Using probability theory, the MRF can es-

timate the likelihood of a particular state occurring in each pixel. Imagine receiving a 

change index image representing a collection of N pixel vectors 𝑋 =  {𝑥1, 𝑥2, . . . , 𝑥𝑁}. The 

labels of the difference image are denoted by L = {l1, l2}. The maximum a posteriori (MAP) 

estimation determines the pixels' labels. For a given pixel x, the formulation can be de-

scribed as follows [12]: 

L∗ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑃(𝐿)𝑃(𝑝|𝐿)} (2) 

where P(x|c) represents the conditional probability distribution within the Gaussian dis-

tribution model, and P(c) denotes the prior probability distribution of the label layer. 

Based on the Bayesian inference principle, one can achieve the maximum value in the 

posterior probability by minimizing the total energy function. The detailed investigations 

in reference [12] can be referred to for further details. 

2.3. Inception CNN 

Deep learning models such as CNNs are applied to image recognition, classification, 

and CD. These networks enable accurate predictions or classifications by automatically 

learning and extracting relevant features from input images. The distinguishing charac-

teristic of CNNs is the capability to execute convolution operations. Convolution involves 

sliding a small kernel over the input image to extract spatial information. By getting 

deeper layers, CNNs can generate complex features. The process and operations carried 

out in this layer can be described as owsfoll : 

𝑧𝑙
𝑘 = [ ∑ 𝑤𝑙

𝑘.𝑛⨂𝑥𝑙−1
𝑛 ] +  𝑏𝑙

𝑘

𝑚𝑙−1

𝑛=1

 (3) 

where 𝑧𝑙
𝑘 denoted as the output feature vector of layer l. ml represents the number of 

convolutional filters in layer l of the network and 𝑥𝑙−1
𝑛  corresponds to the nth input vector 

of layer l. 𝑏𝑙
𝑘 represents the bias vector and 𝑤𝑙

𝑘.𝑛 shows the filter connecting the nth fea-

ture map in the previous layer (l-1) to the kth feature map in layer l. The ⨂ denotes the 

convolution operator [13]. 

Using a fixed kernel size in the initial layers of CNNs can lead to disregarding the 

varying scale of objects in an image. To address this, the Inception module has been ap-

plied in this study. The Inception module aims to capture features at multiple spatial 

scales using parallel convolutional operations of different filter sizes within the same layer. 

This allows the model to learn and combine diverse features simultaneously. The 
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Inception module simultaneously applies max pooling and three convolutions to the in-

put data. All generated feature maps are merged to serve as inputs for the next layer.  

 

Figure 2. The proposed Inception CNN architecture. 

The proposed deep network receives the stacked bi-temporal SAR VV polarization 

images as input and produces the change map in the output layer. Patch-based processing 

is the fundamental approach to utilizing image data in CNNs. Therefore, the input image 

is divided into dimensions of 25x25x2 and used as input for the network. The numbers of 

filters are arranged in the following order: [16,32,64,128,256], and the kernel size is set as 

3x3. The learning rate and the cost function are set to 0.001 and Adam, respectively. The 

network architecture, as shown in Figure 2, illustrates the desired configuration. 

3. Experimental Result 

3.1. Study Area and Dataset 

For comparing the performance of classical methods and the proposed deep network, 

two Sentinel-1 SAR images were acquired from Lake Poopó, which is located in the Oruro 

Department of Bolivia in South America, with a geographical longitude of 67° 02' 50.4'' W 

and a geographical latitude of 18° 49' 26.84'' S, taken in the years 2018.07.09 and 2020.08.15. 

Figure 3 visually illustrates the location of the studied area. 

 

Figure 3. The geographical location of the study area in South America, specifically Bolivia, along 

with the employed SAR images. (a) VV polarization image acquired in 2018, and (b) VV polarization 

image acquired in 2020. 
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3.2. Result Analysis 

The visual representation in Figure 4 showcases the outcomes of RI, MRF, and Incep-

tion CNN methods. The ground truth changes have been obtained experimentally and 

manually by visually examining the changes in the study area. The RI, which divides the 

pixels of the second image by the first image to obtain changes, does not provide satisfac-

tory results. The poor performance of this method depends on using only polarization 

information and thresholding output. 

  

Figure 4. (a) Ground truth; The produced change maps: (b) RI; (c) MRF; (d) Inception CNN. 

The MRF model can consider the pixel neighborhood that improves the detecting 

outcomes. The MRF algorithm improved the detecting results by considering the pixels' 

neighborhood. However, finding and selecting an appropriate number of iterations and 

window sizes can be time-consuming and challenging. On the other hand, Inception CNN 

can extract deep spatial features from the image pixels. In addition, the trained network 

has a high level of automation compared to classical methods. This results in a notable 

enhancement in CD performance. 

To conduct a comprehensive and numerical assessment of the change results, the fol-

lowing precision evaluation indices: Overall Accuracy (O.A), Missed Error (M.E), and 

Kappa Coefficient (KC) are utilized. Based on the evaluation indices presented in Table 1, 

the accuracy of the proposed deep network in detecting waterbody changes has been 

97.35%, which is the highest OA accuracy. In contrast, the RI has exhibited the worst per-

formance by 83.27%. 

Table 1. Accuracy assessment of three methods in generating water zones change map. 

Method OA (%) KC (%) ME (%) 

RI 83.27 29.05 75.03 

MRF 95.07 84.85 12.53 

Inception CNN 97.35 90.28 9 

4. Conclusion 

The advancement of remote sensing techniques has made it easier to monitor envi-

ronmental changes, such as the depletion of water zones. This progress has significantly 

enhanced our ability to understand and address ecological transformations. This study 

compares the performance of classical methods and deep learning approaches in identi-

fying water zone changes from Sentinel-1 images. As examples of classical methods, the 

research employed RI and MRF. Moreover, the Inception CNN was utilized as an alterna-

tive to deep learning networks to enhance the CD performance. The MRF algorithm im-

proved detection results by taking into account pixel neighborhoods. However, the time-
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consuming task lies in determining suitable iterations and window sizes. On the other 

hand, Inception CNN integrates a multi-scale approach directly within its architecture, 

enabling the extraction of reliable spatial features. Experimental findings validate the ef-

ficacy of incorporating these features for CD. Contrary to the common belief that simple 

features like water can be swiftly identified using simple algorithms, this study revealed 

the limitations of such a perspective. The results underscore the indispensability of lever-

aging deep learning networks to attain significantly improved accuracy levels. 

We will develop a multi-source architecture based on CNN, utilizing sentinel-1 and 

-2 images to detect changes in future work. 

Supplementary Materials: Not applicable. 

Author Contributions: “Conceptualization, S.T. and BA.B.; methodology, S.T. and BA.B.; software, 

S.T. and BA.B.; validation, S.T. and BA.B.; formal analysis, S.T. and BA.B.; investigation, S.T. and 

BA.B.; resources, S.T. and BA.B.; data curation, S.T.; writing—original draft preparation, S.T.; writ-

ing—review and editing, S.T. and BA.B.; visualization, S.T.; supervision, M.M. “  

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable.  

Informed Consent Statement: Not applicable.  

Data Availability Statement: The data is accessible at the https://earthengine.google.com. 

Acknowledgments: We want to express our gratitude to the European Space Agency (ESA) for the 

availability of sentinel-1 imagery free of charge. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Goumehei, E.; Tolpekin, V.; Stein, A.; Yan, W. Surface Water Body Detection in Polarimetric SAR Data Using Contextual 

Complex Wishart Classification. Water Resources Research 2019, 55, 7047-7059, doi:https://doi.org/10.1029/2019WR025192. 

2. Wang, L.; Yan, J.; Mu, L.; Huang, L. Knowledge discovery from remote sensing images: A review. WIREs Data Mining and 

Knowledge Discovery 2020, 10, e1371, doi:https://doi.org/10.1002/widm.1371. 

3. Tatarnikova, T.; Chernetsova, E. Neural Network Classifier of Oil Pollution on the Water Surface when Processing Radar Images. 

In Proceedings of the CEUR Workshop Proceedings, 2020, doi: 10.51130/GRAPHICON-2020-2-3-42. 

4. Liang, J.; Liu, D. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS Journal of 

Photogrammetry and Remote Sensing 2020, 159, 53-62, doi:https://doi.org/10.1016/j.isprsjprs.2019.10.017. 

5. Zhang, M.; Chen, F.; Liang, D.; Tian, B.; Yang, A. Use of Sentinel-1 GRD SAR Images to Delineate Flood Extent in Pakistan. 

Sustainability 2020, 12, doi:10.3390/su12145784. 

6. Hiremath, S.; Tolpekin, V.A.; van der Heijden, G.; Stein, A. Segmentation of Rumex obtusifolius using Gaussian Markov random 

fields. Machine vision and applications 2013, 24, 845-854, doi:https://doi.org/10.1007/s00138-012-0470-0. 

7. Wang, J.; Huang, B.; Wang, F. Extraction and Classification of Flood-Affected Areas Based on MRF and Deep Learning. Water 

2023, 15, doi:10.3390/w15071288. 

8. Song, W.; Quan, H.; Chen, Y.; Zhang, P. SAR Image Feature Selection and Change Detection Based on Sparse Coefficient 

Correlation. In Proceedings of the 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV), 

11-13 Dec. 2022, 2022; pp. 326-329, doi: 10.1109/ICARCV57592.2022.10004246. 

9. Aghdami-Nia, M.; Shah-Hosseini, R.; Rostami, A.; Homayouni, S. Automatic coastline extraction through enhanced sea-land 

segmentation by modifying Standard U-Net. International Journal of Applied Earth Observation and Geoinformation 2022, 109, 

102785, doi:https://doi.org/10.1016/j.jag.2022.102785. 

10. Lin, C.H.; Andonie, R.; Florea, A.C. Optimized Fully Convolutional Neural Network Encoder for Water Detection in SAR 

Images. In Proceedings of the 2022 26th International Conference Information Visualisation (IV), 19-22 July 2022, 2022; pp. 343-

350, doi: 10.1109/IV56949.2022.00064. 

11. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 1979, 

9, 62-66, doi:10.1109/TSMC.1979.4310076. 

12. Zhang, H.; Shi, W.; Wang, Y.; Hao, M.; Miao, Z. Spatial-Attraction-Based Markov Random Field Approach for Classification of 

High Spatial Resolution Multispectral Imagery. IEEE Geoscience and Remote Sensing Letters 2014, 11, 489-493, 

doi:10.1109/LGRS.2013.2268968. 

13. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: an overview and application in radiology. 

Insights into Imaging 2018, 9, 611-629, doi:10.1007/S13244-018-0639-9/FIGURES/15. 

https://doi.org/10.1029/2019WR025192
https://doi.org/10.1002/widm.1371
https://doi.org/10.1016/j.isprsjprs.2019.10.017
https://doi.org/10.1007/s00138-012-0470-0


Environ. Sci. Proc. 2023, 5, x FOR PEER REVIEW 7 of 6 
 

 

 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


