

Eng. Proc. 2023, 56, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/engproc

Proceeding Paper

A Distributed Sensor Network (DSN) Employing a Raspberry
Pi 3 Model B Microprocessor and a Custom-Designed
and Factory-Manufactured Multi-Purpose Printed Circuit
Board for Your Next Sensing Project †
Alan Ibbett 1 and Yeslam Al-Saggaf 2,*

1 Charles Sturt University; aibbett@csu.edu.au
2 Charles Sturt University
* Correspondence: yalsaggaf@csu.edu.au
† Presented at the 10th International Electronic Conference on Sensors and Applications (ECSA-10),

15–30 November 2023; Available online: https://ecsa-10.sciforum.net/.

Abstract: This paper presents a detailed design of an inexpensive, simple, and scalable Distributed
Sensor Network (DSN). Each sensor’s hardware consists of a Raspberry Pi 3 Model B microproces-
sor, a specifically designed and factory-made Printed Circuit Board (PCB), an Uninterruptible
Power Supply (UPS) Hat based on a High Capacity Lithium Polymer battery (LiPo), Power over
Ethernet Splitter, a GPS receiver, and a LoRaWAN module. Each sensor is built to capture GPS, Wi-
Fi, and Bluetooth signals and sends this information to a network controller implementing a Lo-
RaWAN gateway. Each sensor’s software is developed so all applications run on top of a Linux
operating system. The layer above it includes system daemon applications, such as Air-mon, HCI
tools, GPSd, and networking support. An SQLite database sits on top of the daemon applications
and records the captured information. After the DSN was successfully tested, it was deployed in a
research study. The novelty of this study is that this was the first time that a DSN was used in high
schools to detect leakage from IoT devices to educate students’ about cyber safety.

Keywords: Distributed Sensor Network; Raspberry Pi; Printed Circuit Board; LoRaWAN gateway;
Inter-Integrated Circuit

1. Introduction
This paper presents the detailed design of the various components of the Distributed

Sensor Network (DSN). The DSN design is inspired by the WiFiScanMap [1]. The paper
begins by first describing the design of the sensor nodes and then the network controller.
The paper then presents the key features of the software design of the nodes and the soft-
ware for the dashboards. The paper then reports the results of a novel study in which the
DSN was used in a school setting to educate students about cyber safety.

The DSN comprises a number of nodes, designed to monitor Wi-Fi and Bluetooth
traffic within the range of the node. Each node is an independent module and each node
controls and manages information flows between the node and the DSN network control-
ler. Control and management information shared between nodes and the DSN controller
includes node status and other telemetry information. Figure 1 below depicts the overall
architecture of the DSN.

Citation: Ibbett, A.; Al-Saggaf, Y. A

Distributed Sensor Network (DSN)

Employing a Raspberry Pi 3 Model B

Microprocessor and a Custom-

Designed and Factory-Manufactured

Multi-Purpose Printed Circuit Board

for Your Next Sensing Project.

2023, 56, x.

https://doi.org/10.3390/xxxxx

Academic Editor(s): Name

Published: 15 November 2023

Copyright: © 2023 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Eng. Proc. 2023, 56, x FOR PEER REVIEW 2 of 6

Figure 1. Key design blocks of the DSN.

The sensor network monitors Wi-Fi and Bluetooth connection requests, beacons and
other broadcast type packets including Basic Service Set Identifier (BSSID), Service Set
Identifier (SSID), Media Access Control address of client (MAC), Channel Number, Re-
ceived Signal Strength Information (RSSI), Encryption Capabilities, UTC time and date of
capture, and Location information of capture.

To capture and manage these packets, a number of open source tools were used in-
cluding iwlist (An application to display detailed wireless information), airmon-ng (A
packet capturing application for Linux), gpsd gps (GPS support for Linux), SQLite (An open
source database), python 3.0 (An open source programming language) and DB Browser for
SQLite (An open source database browser). Other supporting software such as the Re4son
Kernel and the Raspbian Linux distribution were also used to support the DSN.

2. Hardware Design
Each sensor’s hardware consists of a Raspberry Pi 3 Model B microprocessor, a spe-

cifically designed and factory-made Printed Circuit Board (PCB), an Uninterruptible
Power Supply (UPS) Hat based on a High Capacity Lithium Polymer battery (LiPo),
Power over Ethernet Splitter allowing for 5V power via microUSB (from a PoE injector),
a GPS receiver, a LoRaWAN module, control push buttons, OLED screen, a Four-wire I2C
connector, a 40-pin Raspberry Pi connector, a status LED, and five GPIO connectors con-
figured for Signal, Voltage, Ground (SVG). Each sensor is built to capture GPS, Wi-Fi, and
Bluetooth signals and sends this information to a network controller implementing a Lo-
RaWAN gateway.

The Raspberry Pi Model 3B microprocessor had Wi-Fi and Bluetooth built onto the
main board. The Wi-Fi standard is based on the frequency of operation being in the so-
called Industrial Scientific and Medical (ISM) band, which is unlicensed and free to use.
The ISM band covers many frequencies and Wi-Fi has been defined to work on the 2.4
GHz and 5 GHz part of the ISM bands. The Wi-Fi on the Raspberry Pi 3B was limited to
the 2.4 Ghz band.

A prototype Printed Circuit Board (PCB) was designed and sent for printing to OSH-
PARK, a PCB fabrication house based in the United States that specialises in producing
high quality low-cost small batch runs of PCBs. All node components were designed to
be on a single PCB that can be stacked onto other boards as required. By using this “stack-
able” architecture, it was possible to quickly assemble, and if necessary, disassemble a
node. The sensor board contains the following items:
• Organic light emitting diode (OLED) Display to indicate system status: the OLED

provides a way to display a simple menu-based user interface
• RFM9x LoRa radio: this provides a network connection to LoRaWAN or other LoRa

nodes
• Global Position System GPS receiver: this allows the node to accurately collect coor-

dinated universal time (UTC) time and date as well as location information of other
data captured from the GPS

• DC power supply input connector to supply regulated 5VDC to the system
• Status LED to show system status at a glance

Eng. Proc. 2023, 56, x FOR PEER REVIEW 3 of 6

• Five GPIO ports of the Raspberry Pi have been broken out in an SVG layout for con-
necting to external devices. These can include relays, sensors, switches and so forth

• A three-button keypad for interacting with the OLED menu user interface.
The addition of I2C and GPIO breakout connections meant the node could be used

with a wide variety of sensors in a number of remote locations.
The DSN node has been designed to be self-contained and to be used in fixed loca-

tion. Uninterruptable power supplies (UPS) based on the high capacity 3.7 Lithium Poly-
mer (LiPo) battery technology provided power supply to the central processing unit
(CPU) and sensors. LiPo batteries are high capacity, easy to use, and relatively inexpen-
sive. The LiPo battery is paired with a purpose-built UPS card (or “hat” as expansion cards
for the Raspberry Pi are known) that has the appropriate circuitry to detect a low battery
level and initiate a controlled shutdown of the node. The UPS card also handles the charg-
ing of the unit. Five volts from the PoE splitter are plugged into the GPS unit which then
fed the entire node. Figure 2 shows the key elements of the DSN node before assembly.
Figure 3 shows the elements of the DSN node after assembly.

Figure 2. The key elements of the DSN node. Taken from top row moving clockwise: (1) CPU (Rasp-
berry Pi Model 3B); (2) Sensor PCB, shown here unpopulated; (3) Power over Ethernet Splitter; (4)
High Capacity LiPo battery; (5) UPS Hat.

Figure 3. A complete DSN node. (1) 5V power in via microUSB from the PoE injector; (2) GPS unit
(the chip antenna is visible in the picture); (3) LoRaWAN module; (4) Control push buttons; (5)
OLED screen; (6) Four wire I2C connector; (7) 40 pin Raspberry Pi connector; (8) Status LED; (9) Five
GPIO connectors configured for Signal, Voltage, Ground (SVG).

As the nodes in this design were placed in fixed locations, an “out of band” monitor-
ing service was needed to check the status of each node. In this case, LoRa radios and the
LoRaWAN network were chosen to provide this remote monitoring. The LoRa network
is completely separate in frequency and operation to both the Wi-Fi and Bluetooth

Eng. Proc. 2023, 56, x FOR PEER REVIEW 4 of 6

networks that the nodes are monitoring, thereby separating node management functions
from the networks being monitored.

The DSN network controller (DSNNC) is designed to provide real-time feedback on
the operation of each of the distributed sensor nodes. The role of the DSNNC is to act as
a gateway from each of the DSN nodes to a central dashboard. Here the status of each
node can be monitored and, if necessary, the node can be restarted. LoRa is a simple tech-
nology and permits easy integration of telemetry and control data. LoRa is also completely
out of band, which means that LoRa transmissions do not share the same IP network space
as the Wi-Fi the DSN is monitoring [2].

The RAK7249 LoRaWAN gateway provided a wide range of connectivity and power
supply options including Gigabit Ethernet, Wi-Fi, 4G, and PoE power supply. The gate-
way’s geographical and time values are set by an integrated GPS receiver. The gateway
has a (LoRa) range of over 15km. The free Cayenne MyDevices (CMD) dashboard service
was selected to provide the application server services. The CMD was selected because it
is secure, easy to set up, allows shared viewing of dashboards, and is free.

3. Software Design
The original Lauters code [1] published on GitHub was used as the template for the

software design, after translating the Python 2.0 code to Python 3.0 but it was necessary
to add in additional features to support the DSN hardware, including; (1) LoRa support,
(2) Display Support, (3) Menu Support, (4) Keypad Support. As the nodes were placed in
fixed locations, in order to allow each node to start up autonomously, it was necessary to
create a start-up script that was unique to each node.

The software architecture of a DSN node is simple (see Figure 4 below). All applica-
tions ran on top of the Linux operating system. The next layer includes system daemon
applications such as Air-mon, HCI tools, GPSd and networking support. The SQLite da-
tabase sat on top of the daemon applications and information is delivered to the user by
the web-server. Networking tools were made available to all layers of the system. The
web-server is implemented by a custom Python script that also controls the way the dae-
mon processes accessed the database.

Figure 4. DSN node software architecture.

The nodes are designed to capture and log GPS, Wi-Fi and Bluetooth transmission,
but provision has been made to connect other digital instruments for monitoring and log-
ging via Inter-Integrated Circuit (I2C) and one-wire data busses.

The DSN node is a general-purpose device and can support a number of different
software options. The DSN node is based on a Linux Distribution with a number of local
tasks running such as a Virtual Network Computing (VNC) as well as the main data ac-
quisition task. The main data acquisition task is written as a single class in Python 3.0. The
instantiation of this class provides all of the data structure initialization required as well
as database creation and setup if needed.

There are five tasks associated with the DSN implementation, namely the GPS Poller,
Wi-Fi Poller, Bluetooth Poller, LCD Poller and LoRa Poller as depicted in Error! Reference
source not found.. The GPS Poller task runs to regularly collect, parse and validate GPS
data. The validated data is passed back to the main thread where it is written to the

Eng. Proc. 2023, 56, x FOR PEER REVIEW 5 of 6

database. The GPS-Poller thread looks for latitude and longitudinal data, as well as preci-
sion and time information. The Wi-Fi Poller thread uses data collected from the airmon-
ng process to collect Wi-Fi packets from the surrounding area. These packets are validated
by the thread and passed back to the main thread. The Bluetooth Poller thread is similar
to the Wi-Fi Poller thread but uses the hcitool to capture Bluetooth packets.

Figure 5. DSN node software architecture.

The LCD Poller task handles the LCD and the user interface push buttons. The LCD
Poller thread uses the rpi-128 × 64-oled -menu Python library [3]. This library in turn uses
the RPi.GPIO library. A number of simple menus were set up to allow the user to check
the state of the DSN node. The reliability of the data gathered by this experiment depends
on the ability of the DSN to capture and record packets. The status of this packet capture
was monitored by the DSNNC. The DSNNC regularly sends LoRa messages to the user
via the RAK gateway. If these signals are lost, or indicate a node has failed, then two ac-
tions can occur; the node will attempt to reconnect with the controller and, if necessary,
will reboot.

The Wi-Fi and Bluetooth Poller threads rely on the Airmon-ng script. Airmon-ng en-
ables monitor mode on suitable wireless interfaces. The script also allows an interface to
be switched from monitor mode (the mode used in this application) to managed mode
(traditional Wi-Fi mode). Airmon-ng allows for the capture and classification of packets.
Airmon-ng requires that the Wi-Fi chip on the Raspberry Pi be put into monitoring mode,
which was achieved with the help of the drivers from the nexmon project [4]. More details
of the re4son project can be found here [5]. This workaround allowed the Airmon-ng code
to collect Wi-Fi packets as expected. This data was then recorded into an SQLite Database,
which sat on top of the daemon applications. Networking tools are made available to all
layers of the system. Information from each sensor forming the DSN that is received by
the LoRaWAN gateway is communicated to the user via a web-server. The web-server is
implemented by a custom Python script which also controlled the way the daemon pro-
cesses accessed the database.

4. Study Results and Conclusions
A series of tests were carried out to ensure the DSN was functioning as expected.

Based on the successful outcome of these tests, the DSN was used in a first research study
of its kind in which the DSN was deployed on a high school ground in Australia to educate
students about cyber safety. After informing the students about the presence of a DSN on
campus detecting leakage from IoT devices, the DSN was turned on. The traffic captured
by the DSN at that time served as the standard for a normal traffic at that school. Then,
during a cyber safety lesson, the students were shown the results of the DSN monitoring
and were trained on how to modify their device settings to reduce data leakage. At that
time, the DSN continued to detect leakage from IoT devices to see if children changed

Eng. Proc. 2023, 56, x FOR PEER REVIEW 6 of 6

their device settings to protect themselves online. The results of the study revealed that
the amount of data leaked from smartphones after the cyber safety lesson was signifi-
cantly less than the traffic captured before the cyber safety lesson suggesting the cyber
safety lesson was effective in reducing data leakage.

The DSN was simple, scalable and inexpensive. The total cost to build a single node
(a sensor), including the cost of the Raspberry Pi, was less than $160 (Australian). The
inclusion of a LoRaWAN module, control push buttons, OLED screen, and status LED
made accessing and controlling the DSN remotely a simple process. The scalability of the
sensor’s PCB, which has a Four-wire I2C connector, makes the device capable of perform-
ing numerous types of sensing and control functions.

Supplementary Materials: The following supporting information can be downloaded at:
https://github.com/alanibbett, Files S1: Distributed Sensor Network-PCB Files, Files S2: Distributed
Sensor Network Python Script.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, in-
vestigation, resources, data curation, and visualization A.I.; writing—original draft preparation,
writing—review and editing, and supervision Y.A.-S. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki, and approved by the Human Research Ethics Committee) of Charles Sturt Univer-
sity (protocol code H19072 and date of approval 6/6/2020).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The authors wish to thank Michael Bewong for his co-supervision the first au-
thor’s doctoral thesis from which this work ensued.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bordeaux: A Digital Urban Exploration. Available online: https://github.com/mehdilauters/wifiScanMap/blob/master/Re-

sults.md (accessed on 8 October 2023).
2. Vangelista, L.; Zanella, A.; Zorzi, M. Long-Range IoT Technologies: The Dawn of LoRa™. In Proceedings of the Future Access

Enablers for Ubiquitous and Intelligent Infrastructures: First International Conference, FABULOUS 2015, Ohrid, Republic of
Macedonia, 23–25 September 2015; Revised Selected Papers 2015; Springer International Publishing: Berlin/Heidelberg, Ger-
many, 2015; pp. 51–58. https://doi.org/10.1007/978-3-319-27072-2_7.

3. rpi-128x64-Oled-Menusystem. Available online: https://github.com/jpuk/rpi-128x64-oled-menusystem (accessed on 8 October
2023).

4. Schulz, M.; Wegemer, D.; Hollick, M. Nexmon: Build your own wi-fi testbeds with low-level mac and phy-access using firm-
ware patches on off-the-shelf mobile devices. In Proceedings of the 11th Workshop on Wireless Network Testbeds, Experi-
mental Evaluation and Characterization, Snowbird, UT, USA, 20 October 2017.

5. Boeving, C.; Klimaszewski, S.; Rebillout, A.; Wilson, B.; Ruiz de Alegría, D.; O’Gorman, J.; O’Gorman, J.; Hertzog, R. Re4son-
Kernel for Raspberry Pi. Kali Linux Development Team. 12 May 2019. Available online: https://re4son-kernel.com/re4son-pi-
kernel/ (accessed on 8 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

