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Abstract: Our research investigates an approach to forecasting human vital signs by formulating 

the problem as a sequence-to-sequence (seq2seq) task, utilizing bidirectional long short-term 

memory models (BiLSTM). The study aims to compare the forecasting accuracy of uni- and multi-

variate modeling strategies over different forecasting horizons ranging from 1 s to 10 s. The dataset 

comprises sensor data collected during a lab study in which thirteen participants engaged in a col-

laborative assembly scenario with a robot. Our results show that univariate models outperform 

multivariate ones in terms of forecasting accuracy, offering valuable insights into accurate forecast-

ing of human physiological parameters, with potential implications for human-robot collaboration, 

personalized medical monitoring, and healthcare applications. 
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1. Introduction 

In the dynamic realm of human-robot collaboration (HRC), a significant challenge 

lies in equipping robotic systems with the ability to seamlessly adapt to users’ internal 

states, such as stress or relaxation. Ongoing research in this field has shown that stress 

can be indirectly assessed through the integration of diverse sensors that monitor various 

physiological indicators, including Electrocardiograph (ECG), Pupil Dilation (PD), Elec-

tromyograph (EMG), Electroencephalograph (EEG), Heart Rate Variation (HRV), skin 

temperature, respiratory rate and Electrodermal activity (EDA) or Galvanic Skin Re-

sponse (GSR) [1–4]. Machine Learning classification techniques have made noteworthy 

advancements in stress detection [5–8]. In diverse environments, such as academic, driv-

ing, or office-like settings, accuracy rates exceeding 90% have been achieved [5]. By going 

beyond simply recognizing emotions in real-time, to anticipatory modelling, robotic sys-

tems can adjust their behavior proactively, leading to more natural, productive collabora-

tions. However, despite the promising developments in stress detection, the exploration 

of forecasting future states remains limited. Some research has been conducted on fore-

casting vital signs in intensive care patients [9], postoperative complications [10] or in 

health monitoring [11]. In [11], the authors compared different models, evaluating their 

accuracy in univariate forecasts of pulse, oxygen level percentage (SpO2) and blood pres-

sure. Notably, deep learning models such as Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) outperformed classical forecasting strategies like Autoregressive 

(AR) and Autoregressive Integrated Moving Average (ARIMA) models, with GRUs per-

forming the best. Earlier work also revealed in different use cases that Bidirectional Long 

Short-Term Memory (BiLSTM) models lead to a significant improvement in average time 
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series prediction accuracy of 37.78% [12] compared to classical LSTMs. It was observed 

that training the bidirectional variant was slower, suggesting that it extracts unique fea-

tures inaccessible to other models [13]. In the field of mental state and vital sign forecast-

ing the performance of BiLSTMs is unknown. Given the current state of the research, an 

intriguing avenue for further investigation pertains to the exploration of the intricate in-

terplay between diverse sensor modalities, which may hold the potential to enhance vital 

sign forecasting. Specifically, there is an opportunity to explore whether the simultaneous 

utilization of multiple modalities in a multivariate forecasting framework can yield im-

proved forecasting accuracies by leveraging information that remains latent to univariate 

models. This study significantly contributes by highlighting the impacts of multivariate 

forecasting strategies versus univariate approaches. It also provides insights into vital sign 

forecasting, particularly through the integration of BiLSTMs with collaborative robotics, 

thus advancing the existing knowledge in this field. 

2. Materials and Methods 

2.1. Dataset 

The dataset used in this study consists of vital signs from 13 subjects recorded in the 

context of a collaborative assembly. In this assembly, a human worker collaboratively as-

sembles a component with a collaborative robot (cobot). To capture the influence of the 

cobot on the human’s vital signs, six different scenarios, differing in various factors such 

as the degree of collaboration or the working speed of the robot, were executed. Between 

every configuration the recording was stopped. As a result, each of the 13 subjects con-

tributes 6 individual sequences, each lasting approximately 2 min, culminating in a total 

of 76 sequences. The utilized sensor modalities are the Interbeat Intervals of the heart (IBI) 

measured via ECG and the EDA of the skin, both using the BITalino (r)evolution Plugged 

Kit BLE/BT (PLUX Wireless Biosignals, Portugal) as well as the Pupil Dilation (PD), meas-

ured with pupil core eye tracking glasses (Pupil Labs, Berlin, Germany). 

2.2. Bidirectional Long Short-Term Memory Model 

Bidirectional Long Short-Term Memory networks (BiLSTM) are a type of recurrent 

neural network (RNN) architecture used in natural language processing and sequential 

data tasks, like time series data. Introduced to overcome the limitations of regular RNN 

they enhance traditional LSTMs by processing input data in both forward and backward 

directions, capturing context from both past and future [14]. BiLSTMs were introduced to 

address the vanishing gradient problem and improve the modeling of long-range depend-

encies in sequential data. 

2.3. Preprocessing 

The data preprocessing involved three steps. First, each modality was handled inde-

pendently. For IBI, no direct measures were needed. For PD, blink removal was essential 

using the procedure outlined in [15,16]. EDA-Signal involved extracting the Skin Con-

ductance Response, as described in [17]. In the second step, all modalities underwent uni-

form processing, which included resampling, smoothing, and data normalization to en-

hance quality and ensure consistency. In the final phase, individual modalities were syn-

chronized to create a multivariate dataset. Extensive feature engineering was then per-

formed on this dataset, yielding both static features (e.g., means, minimums, and maxi-

mums of time series) and dynamic features (e.g., moving averages and lag features). 

2.4. Stationarity 

Stationarity signifies that statistical parameters such as the mean and variance exhibit 

relative constancy throughout the observed time span [18]. This property holds significant 

importance, particularly in forecasting applications. To assess stationarity, we employed 

the Augmented Dickey-Fuller Test (ADF-Test), which is one of the most commonly used 
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measures of stationarity [19–21]. To induce stationarity a differentiation procedure was 

implemented, resulting in stationarity in 99% of all sequences. 

2.5. Sequence-to-Sequence Modeling 

In the context of time series forecasting, sequence-to-sequence modeling is a tech-

nique wherein a learner maps a sequence of past values to a sequence of future values 

[22]. To adapt the dataset into a format suitable for input and output sequences, we em-

ployed the sliding window method presented in [23]. Three variations of each dataset 

were created for one-second, five-second, and ten-second forecasting horizons, with con-

sistent look-back window lengths. 

2.6. Measures of Evaluation 

To assess the forecasting accuracy of the models, we employ the Symmetric Mean 

Absolute Percentage Error (sMAPE). The formula for calculating sMAPE is presented be-

low [24]. 

𝑠𝑀𝑎𝑝𝑒 = (
2

𝑛
∑

|𝑦𝑡 − �̂�𝑡|

|𝑦𝑡| + |�̂�𝑡|

𝑛

1

) ∗ 100% (1) 

To establish a baseline for assessing the model’s performance and to ensure the ro-

bustness of our results, we employ a simple benchmark known as the Naïve Forecast as 

recommended by [25]. In this approach, the prediction for the next time step is generated 

by using the value from the previous time step, which makes it simple to calculate but 

nonetheless an effective benchmark method. This basic forecasting method is mathemat-

ically represented by Equation (2) [26]. 

�̂�𝑡+𝑘 = 𝑦𝑡  (2) 

3. Results 

3.1. Univariate Forecast 

Table 1 illustrates the superior performance of the BiLSTM model compared to the 

baseline across all forecasting horizons for univariate IBI. 

 

Table 1. sMAPE of the univariate forecast of the interbeat intervalls. 

Forecasting Horizon Naïve Forecast BiLSTM 

1 s 123.79% 2.1% 

5 s 144.79% 16.01% 

10 s 146.37% 17.36% 

Table 2 displays results for univariate PD forecasting. The Naïve Method consistently 

shows higher prediction errors than the BiLSTM model across all horizons. 

Table 2. sMAPE of the univariate forecast of the pupil dilation. 

Forecasting Horizon Naïve Forecast BiLSTM 

1 s 142.92% 2.07% 

5 s 154.14% 5.39% 

10 s 157.00% 5.66% 

Particularly noteworthy is the fact that when extending the forecasting horizon from 

1 to 5 s, a marked increase in sMAPE is observed, amounting to 13.91% for univariate IBI 

and 3.32% for univariate PD. In contrast, extending the forecasting horizon from 5 to 10 s 

only results in an increase of 1.35% for univariate IBI and 0.27% for univariate PD. 
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3.2. Multivariate Forecast 

Table 3 compares forecasting accuracy for univariate and multivariate models across 

different horizons. The multivariate approach consistently yields slightly higher sMAPE, 

outperforming univariate IBI by just 0.24% at the 5-s horizon. 

Table 3. sMAPE of the multivariate compared to the univariate forecasts. 

Forecasting Horizon Univariate IBI Univariate PD Multivariate 

1 s 2.1% 2.07% 16.12% 

5 s 16.01% 5.39% 15.77% 

10 s 17.36% 5.66% 22.48% 

4. Discussion 

The results presented in this work reveal a substantial disparity in performance be-

tween univariate and multivariate models. Despite the potential for multivariate models 

to leverage relationships among individual parameters, generated features, and addi-

tional skin conductance data, the incorporation of this supplementary input does not yield 

an improvement in forecasting accuracy. Several possible explanations for this phenome-

non can be considered. Firstly, it is possible that no meaningful relationships exist among 

the various parameters under investigation. This lack of inherent correlations may limit 

the capacity of multivariate models to extract valuable predictive insights, rendering the 

inclusion of additional input variables ineffective. Secondly, the quality of the supplemen-

tary skin conductance data may be a contributing factor. It is conceivable that these data 

introduce noise into the prediction process, thereby diminishing overall accuracy. Further 

investigation into the reliability and relevance of the additional data may clarify its impact 

on model performance. Thirdly, the selected features for the multivariate models may ei-

ther have no significant influence on the prediction accuracy or, in some cases, exert a 

detrimental effect. The inclusion of irrelevant or potentially confounding features can hin-

der the model’s ability to discern meaningful patterns in the data, leading to suboptimal 

forecasting outcomes. These findings underscore the importance for a thorough under-

standing of the underlying relationships within the data and the potential consequences 

of incorporating additional variables. 

5. Conclusions 

The research findings presented in this study shed light on the predictive perfor-

mance of univariate versus multivariate deep learning models in the context of forecasting 

vital signs. Notably, the univariate prediction of IBI and pupil diameter yields superior 

results when compared to the multivariate approach, which incorporates additional var-

iables such as skin conductance and generated features. This suggests that the univariate 

models excel in capturing the intricate patterns and relationships within these physiolog-

ical signals. Interestingly, as the forecasting horizon increases from one to five seconds, a 

significant decrease in accuracy is observed. However, this decline in accuracy remains 

relatively stable when extending the forecasting horizon from five to ten seconds. These 

findings have important implications for predictive modeling in physiological signal anal-

ysis where high precision is required, such as assessing cognitive load or attention levels. 

The observed stability in forecasting accuracy for longer horizons indicates that the uni-

variate approach may offer a reliable foundation for longer-term physiological forecasting 

tasks. This work contributes valuable insights into the selection of modeling approaches 

for vital sign forecasting, underscoring the significance of considering the specific predic-

tive goals and horizons in such applications. Future research in this domain should ex-

plore alternative feature engineering strategies, data preprocessing techniques, and model 

architectures to unlock the latent predictive potential of multivariate approaches. Overall, 

this study contributes valuable insights into the complexities of multivariate modeling in 

physiological signal analysis and paves the way for further advancements in this field. 
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