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Abstract: Federated learning (FL) is a field in distributed optimization. Therein, the collection of 

data and training of neural networks (NN) are decentralized, meaning that these tasks are carried 

out across multiple clients with limited communication and computation capabilities. In FL, the 

client NNs are first trained with locally available data. Next, they are aggregated to update a global 

NN. FL suffers from non-independent and identically distributed (iid) data and asynchronous com-

munication between the server and the clients, which degrades the NN’s overall performance. In 

this work, we investigate FL for a small live gesture sensing NN, using a low-power 60 GHz fre-

quency modulated continuous wave radar from Infineon Technologies. The challenges of data spar-

sity, i.e., only a fraction of a gesture recording corresponds to an executed gesture combined with 

non-iid data, pose issues during neural network training. It is shown that FL reaches an accuracy 

higher than 96.2% for an iid setting. However, an increasing level of non-iid data degrades the ac-

curacy to 64.8%. To tackle the accuracy degradation, we propose to dynamically adapt the class 

weights during the training procedure based on each client’s varying ratio of data sparsity. Moreo-

ver, regularization terms are included in the loss function to prevent client drift and overconfidence 

in the client’s NN prediction. Finally, it is shown that the proposed modifications increase the NN’s 

performance, such that an accuracy of 97% is obtained despite a high degree of non-iid data. 
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1. Introduction 

Gesture recognition revolutionizes human-machine interfaces by providing a con-

tact-free and intuitive method of interaction. Unlike touch-based systems, gesture-con-

trolled systems introduce a touchless approach that enhances hygiene and enables inter-

action without direct hand exposure. Consequently, gesture sensing is one of the leading 

solutions for effortlessly managing a wide range of consumer and IoT devices [1]. Gesture 

recognition using radar sensing is a prominent application, merging signal processing-

based feature extraction with the classification capabilities of neural networks (NNs). Ra-

dar sensors are advantageous to vision-based sensors in terms of privacy preservation, 

monetary cost, and memory efficiency. Early studies by Lien et al. in 2016 on gesture 

recognition with radar sensors propose a feature extraction based on range-Doppler im-

ages [2], which relies on intricate 2-dimensional (2D) data processing. Furthermore, the 

training of NNs requires a rich database with broad distributional coverage that is then 

transmitted to a central server. While radar gesture sensing protects user privacy, data 

collection often involves sensitive user data, mainly because the radar sensor is paired 

with cameras to obtain accurate ground truth labels. 
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Federated learning (FL) offers a solution by shifting the training of a global NN to 

different clients, where all clients train a client NN with local data. These client NNs are 

then aggregated to learn a global NN, ensuring that the data remains local and is not 

transmitted to a central server. Although FL has gained significant traction over the past 

years, the used NN architectures are primarily large and require substantial computa-

tional power for training and inference. This poses a challenge in situations where the 

NNs should be implemented in computational and memory-efficient devices. In 2017, 

McMahan et al. [4] introduced the idea of FL and suggested an efficient way to train deep 

networks collaboratively. The challenge of heterogeneous FL, introduced by Zhao et al. 

[5], involves the training of NNs across different devices or servers with varying charac-

teristics, such as data distributions and features. Challenges in FL when dealing with data 

heterogeneity, also known as non-independent and identically distributed (iid) data, were 

also addressed in [6–9]. They investigated how fluctuating data distributions in the clients 

affect the NN’s convergence and proposed strategies to mitigate the impact of non-iid 

data. Communication efficiency is also a crucial research domain in FL, where the objec-

tive is to reach a high accuracy while minimizing the data exchange or the required com-

munication rounds between the clients and the server. In [10,11], communication effi-

ciency is enhanced by introducing various optimization techniques, reducing the commu-

nication overhead while maintaining the NN’s performance. Within the relatively unex-

plored domain of using FL for radar sensors, Savazzi et al. [12] investigated in 2021 a 

serverless FL approach, which addresses the task of tracking the position of individuals. 

In 2022, Yang et al. proposed an autoencoder-based technique to encode local gradients 

from client NNs into a lower-dimensional latent representation to decrease the transmis-

sion error within a three-class classification task across three clients [13]. However, these 

current state-of-the-art methods of FL in the context of radar do not account for the effects 

of data sparsity, imbalanced data distributions, or varying levels of non-iid data. Further-

more, they require significant changes in the NN architecture while utilizing computa-

tionally intensive 2D processing and large network architectures. 

In this work, we apply FL on a small real-time gesture sensing NN designed for a 

low-power 60 GHz frequency modulated continuous wave (FMCW) radar sensor devel-

oped by Infineon Technologies and Google [1]. The NNs are designed to be efficient in 

terms of computational power and memory usage, aiming for minimal hardware require-

ments. The presented FL algorithms are evaluated on a diverse dataset, including approx-

imately 26 k gesture recordings. Our approach adopts the lightweight 1-dimensional (1D) 

radar processing algorithm from Strobel et al. [3], which requires fewer computational 

operations and smaller NNs than the 2D radar processing in [2]. Besides computationally 

efficient architectures, we address client heterogeneity and asynchronous client commu-

nication. To effectively overcome these training challenges, our main contribution in-

volves dynamically adjusting the training process by assigning weights to the gesture re-

cordings. These weights are based on the ratio of distinct gesture recordings and back-

ground within each client’s data, where all non-gesture recordings are considered as back-

ground. This strategy aims to counteract the accuracy degradation due to increasing levels 

of non-iid data and to decrease the number of communication rounds. An overview of 

our novel radar-based FL approach compared to prior work is highlighted in Table 1. The 

remainder of this paper is organized as follows. Section 2 discusses the radar processing 

setup and the neural network architectures and outlines the proposed contributions. The 

results are presented and discussed in Section 3. Section 4 concludes this paper. 
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Table 1. Comparison of radar-based FL approaches. 

 Radar Processing Parameters 
Mitigates Non-Iid 

Data 
Task 

This work 1D 1.000 Yes 
6 Class classifica-

tion 

Savazzi et al. 

[12] 
2D 3.000.000 No Regression 

Yang et al. [13] 2D 30.400 No 
3 Class Classifica-

tion 

2. Methods 

In this section, the necessary radar processing steps, the sensor setup, and the utilized 

NN architectures are briefly discussed. Furthermore, the proposed modifications in the 

NN’s learning method are introduced. 

2.1. Radar Setup and Processing 

The radar sensor emits a chirp signal, which ranges from 58.5 GHz to 62.5 GHz. This 

chirp signal is reflected by all objects in front of the sensor such that the reflected signal is 

received by the receive antenna. The received signal is downconverted with the transmit 

signal, yielding the intermediate frequency (IF) signal which is digitized with a sampling 

rate of 2 MHz into 64 so-called fast time samples which translates to a range resolution of 

0.0375 m and a maximum detectable range of 1.2 m. Transmitting multiple (32) chirps 

allows to store the corresponding IF signals in a 32 × 64 matrix as illustrated in Figure 1, 

left. Note that the row index along the chirps is referred to as slow time. Computing a 

discrete Fourier transform (DFT) along fast time yields the range profile, wherein each 

peak at a range bin corresponds to an object at a certain radial distance. This is illustrated 

by Figure 1, center, where the range bins related to the hand and the body are highlighted 

in black. Finally, computing the so-called Doppler DFT along slow time at the hand’s 

range bin yields another peak (Figure 1, right). The position of this peak relates to the 

radial velocity of the hand and the magnitude will be referred to as amplitude. As sug-

gested by [3] only the hand’s range bin is used for further processing. Hence, this is re-

ferred to as 1D radar processing. In addition to radial distance and radial velocity, the 

angle in azimuth and elevation of an object may be estimated by using three receive an-

tennas arranged in an L-shape [15]. Consequently, five input features, i.e., radial distance, 

radial velocity, azimuth angle, elevation angle and the amplitude averaged over all receive an-

tennas, are extracted from the radar data. Note that, the radar data required to compute 

all five features will be referred to as a radar frame throughout this work. Within the clas-

sification task, we consider six gestures, i.e., swipe left, swipe right, swipe up, swipe down and 

push and no gesture which is referred to as background. 

 

Figure 1. Illustration of the reduced 1D radar processing algorithm. Raw radar is illustrated data for 

one antenna (left). The hand and the body are resolved with a discrete Fourier transform along the 
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fast time samples (center). The discrete Fourier transform is applied to the detected hand range bin 

to resolve its velocity (right). 

The network consists of a long short-term memory (LSTM) based architecture to cap-

ture the time dependencies for the gesture recordings that are each compromised of a 

sequence of radar frames. In our model, the inputs are sequences of the five extracted 

features, while the output consists of gesture predictions. The start until the end of each 

gesture is labeled as the executed gesture to allow a real-time recognition of the gestures, 

while the remainder of the gesture recording is labeled as background. The LSTM layer is 

initialized with 16 hidden units, followed by a dense layer with six output neurons and a 

softmax activation representing the five gestures and the background. 

2.2. Learning Methods 

In each communication round t of the FL method, d NN weights 𝐰𝑡  𝜖 ℝ𝑑 are trans-

mitted from the server to a selected group of 𝐾 ϵ ℕ clients with 𝑛𝑖 ϵ ℕ data samples. 

These clients collectively possess 𝑛 = ∑ 𝑛𝑖
𝐾
𝑖=1  data samples, allowing them to engage in 

localized learning using their local data samples while referencing the server’s weights 

for their individual NNs. The resulting client weights 𝐰𝑡+1
𝑖  are then sent to the server 

after local training, which aggregates them into an updated set of global weights, 

  𝐰𝑡+1 =  ∑
𝑛𝑖

𝑛
𝐰𝑡+1

𝑖

𝐾

𝑖=1

 (1) 

The server and clients repeat this procedure through multiple communication 

rounds to fit the global NN to the client data without exchanging training data between 

clients and server. Given that the gesture execution constitutes only a fraction of each re-

cording, we are confronted with an imbalanced dataset, wherein the majority of ground 

truth labels correspond to background. Hence, we propose to adapt the loss function with 

respect to the ratio of background and gesture samples for each recording with length 

𝐹 ϵ ℕ, and for all 𝐶 ϵ ℕ classes during the training procedure. Specifically, the loss func-

tion may be written as 

                                 𝐿S =  − 
1

𝐹
∑ ∑ (

𝐹

∑ 𝑦𝑗,0 𝐹
𝑗=1

𝑦𝑖,𝑐 log(�̂�𝑖,𝑐) +  𝑦𝑖,0 log(�̂�𝑖,0))

𝐶

𝑐=1

𝐹

𝑖=1

, (2) 

where 𝑦𝑖,𝑐 and ŷ𝑖,𝑐 is the actual and predicted probability of the i-th frame to be the ges-

ture c, where the index 0 corresponds to the background class. Furthermore, a constraint 

proposed in [9], prevents non-iid and asynchronous clients’ weights from drifting too 

strongly compared to the server’s weights 𝐰𝑡 and serves as the regularization term 

𝐿cons =  ⃦𝐰𝑡  −  𝐰𝑡+1
𝑖   ⃦2. (3) 

A different loss function, known as the confidence constraint, is utilized when mul-

tiple client NNs encounter varying label distributions and undergo different numbers of 

local training epochs. In such scenarios, these client NNs are sensitive to overfitting to 

their respective heterogeneous distributions, resulting in overly confident predictions on 

their individual local datasets. To address this issue, we utilize the constraint from [14] 

 𝐿C = ∑ log(�̂�𝑖,𝑐)

𝐶

𝑐=0

, (4) 

enhancing the generalization capabilities. The final loss function is defined as 

𝐿 =  𝐿S +  𝜆 𝐿C +  µ 𝐿cons, (5) 

with 𝜆 𝜖 [0,1] and µ 𝜖 [0,1] as weighting coefficients. For the baseline approach (2) is re-

placed in (5) with the cross-entropy loss. 
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3. Results and Discussion 

The first study includes varying degrees of non-iid data in each client. The data is 

split in an iid partition, where the data is shuffled, and an equal number of gesture record-

ings is assigned to each client. In the non-iid configuration, each client is assigned an equal 

number of gesture recordings. However, the client’s dataset only contains a subset of clas-

ses ranging from 1 to 4. The batch size, referring to the number of gesture recordings uti-

lized in one iteration of the training, is fixed at 32. The stochastic gradient descent opti-

mizer is used with a learning rate of 0.0001, and the algorithms are evaluated in 800 com-

munication rounds. The total number of clients is 100, and the number of selected clients 

in each communication round is 10. Furthermore, a model is trained where all the data is 

centralized based on Strobel et al. [3] to compare FL with classical ML. Table 2 illustrates 

the test accuracy. In the synchronous client setting, all clients complete the same number 

of local epochs (Table 2, columns 2–3), whereas in the asynchronous client setting the 

number of local epochs can vary across clients (Table 2, columns 4–5). A fixed number of 

5 local epochs is used for all clients in the synchronous client scenario, while in the asyn-

chronous client scenario, the number of local epochs is randomized for each client within 

the range of 1 to 20 epochs. The results in Table 2 reveal that, as the degree of non-iid data 

increases, there is a noticeable drop in accuracy for the baseline approaches. The proposed 

approaches prevent the effects of non-iid-related accuracy degradation for synchronous 

and asynchronous clients. For instance, higher than 97% accuracy is achieved in the 1 label 

per client setting, which is comparable to the iid case with an accuracy higher than 98%. 

One should note, also for the baseline approaches, that randomizing local epochs within 

the clients does not affect the accuracy drastically. The underlying reason could be as-

cribed to the regularization terms in (3) and (4), which might effectively mitigate the ef-

fects of asynchronous clients or that the randomization of the local epochs effectively 

yields more training iterations. As can be seen in Figure 2, by integrating the proposed 

approach, not only the necessary communication rounds are reduced, but also superior 

performance is achieved even in scenarios with increased levels of non-iid data. Further-

more, classical ML outperforms FL scenarios by a small margin. Nevertheless, FL has the 

advantage of not requiring to aggregate the client data in a centralized fashion. 

Table 2. Gesture accuracy for varying levels of non-iid data and asynchronous clients. 

Labels Per Cli-

ent 

This Work: 5 Local 

Epochs (Synchro-

nous) 

Baseline: 5 Local 

Epochs (Synchro-

nous) 

This Work: 1 to 20 

Local Epochs 

(Asynchronous) 

Baseline: 1 to 20 Local 

Epochs (Asynchro-

nous) 

Baseline: Tra-

ditional 

Learning 

5 (iid) 98.2% 96.2%    98.4% 96.0% 98.8% 

4 98.0% 86.2%  98.4% 91.9% - 

3 97.7% 83.2%  97.8% 90.0% - 

2 97.4%     79.0%   97.4% 88.1% - 

1  97.0% 64.8%  96.1% 78.5% - 
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Figure 2. FL accuracy for five labels for each client (iid, left) and one label for each client (non-iid, 

right). The number of local epochs is randomized in each client between 1 and 20. 

The second study illustrates the effects of the regularization terms denoted in (3) and 

(4). As may be seen in Figure 2, it is evident that the inclusion of those regularization terms 

in the loss function enhances the training of the NN, considering an increasing level of 

non-iid data. This results in a substantial reduction of required communication rounds. 

Asynchronously aggregating the clients’ NNs into the global NN negatively impacts the 

accuracy of both the iid and the non-iid data partition. It should further be noted that 

combining the proposed loss function (2) and the regularization terms (3) and (4) is bene-

ficial to achieve high accuracy and reduce the communication rounds. When only apply-

ing the weighted loss, significantly more communication rounds are needed to achieve 

comparable accuracy. Moreover, the negative impact of asynchronous clients increases 

with rising degrees of non-iid data, while synchronous clients achieve high performance 

without requiring the regularization term. This approach might be limited by the data 

quality available to the clients. In this work, it is assumed that the gestures are executed 

correctly. Falsely executed gestures could, therefore, degrade the performance of this ap-

proach. Therefore, future research should also address the open topic of varying data 

quality in the clients and could weight each client based on this. 

4. Conclusions 

In this work, we utilized FL in the scope of varying levels of non-iid data and client 

asynchronicity for low-power and small NN architectures within FMCW radar gesture 

sensing. We introduce a modified loss function to mitigate accuracy degradation caused 

by varying levels of non-iid data and client asynchronicity. We showed how an increasing 

degree of non-iid data decreases the NN’s accuracy. By introducing a new loss function 

that incorporates the varying degrees of label sparsity in the training procedure, the ges-

ture accuracy is increased by up to 33%. Furthermore, we identified adapting the class 

weights as a crucial component in the training procedure to maintain high accuracy and 

low communication overhead. 
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