
Citation: Toker, O. A High Level

Synthesis Approach for RISC-V

RV32I Based SoC and Its FPGA

Implementation. Eng. Proc. 2023, 56,

0. https://doi.org/

Academic Editor: Firstname

Lastname

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

A High Level Synthesis Approach for RISC-V RV32I Based SoC
and Its FPGA Implementation †

Onur Toker

Electrical and Computer Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
otoker@floridapoly.edu
† Presented at the 10th International Electronic Conference on Sensors and Applications (ECSA-10), 15–30

November 2023; Available online: https://ecsa-10.sciforum.net/.

Abstract: In this paper, we present a RISC-V RV32I based System on Chip (SoC) design approach
using the Vivado High Level Synthesis (HLS) tool. The proposed approach consists of three separate
levels: The first one is an HLS design and simulation purely in C++. The second one is a Verilog
simulation of the HLS generated Verilog implementation of the CPU core, a RAM unit initialized
with a short assembly code, and a simple output port which simply forwards the output data to the
simulation console. Finally, the third level is an implementation and testing of this SoC on a low-cost
FPGA board (Basys3) running at a clock speed of 100 MHz. A sample C code is compiled using the
GNU RISC-V compiler tool chain and tested on the HLS generated RISC-V RV32I core as well. The
HLS design consists of a single C++ file with less than 300 lines, a single header file, and a testbench
in C++. Our design objectives are (1) The C++ code should be easy to read for an average engineer,
and (2) The coding style should dictate minimal area, i.e., minimal resource utilization, without
significantly degrading the code readability. The proposed system is implemented for two different
I/O bus alternatives: (1) A traditional single clock cycle delay memory interface, and (2) The industry
standard AXI bus. We present timing closure, resource utilization, and power consumption estimates.
Furthermore, by using the open-source synthesis tool yosys, we generate a CMOS gate-level design
and provide gate count details. All design, simulation, and constraint files are publicly available in a
GitHub repo. We also present a simple dual-core SoC design, but detailed multi-core designs and
other advanced futures are planned for future research.

Keywords: High Level Synthesis; RISC-V; System on Chip; FPGA; multi-core architectures

1. Introduction

In this paper, we we present a RISC-V RV32I based System on Chip (SoC) design and
implementation using a High Level Synthesis (HLS) approach. The complete core design
is done in HLS, and then simulated at the C level, then at the Verilog level, and finally
tested on a low-cost FPGA board at 100 MHz clock speed. Both assembly programs, and C
programs compiled with the GNU RISC-V toolchain are used as RAM images for testing
the HLS generated core. The proposed HLS core design has a single C++ file with less than
300 lines, and is designed to be both highly-readable and use minimal hardware resources.

There are several published papers for CPU design in different hardware description
languages (HDL). In [1], a very simple reduced instruction set (RISC) processor design
is presented with about 120 lines of Verilog code. See [2–4] and references therein for
related work. RISC-V is a free and open source instruction set architecture [5?]. The
standard defines various ISAs starting with the base architecture RV32I. There are numerous
Verilog implementations of RISC-V architectures, with varying degrees of performance and
resource utilization. The paper [6] presents a review of some of the well-known open source
designs, and links to relevant GitHub repos for source codes. One disadvantage of these
Verilog implementations is the length of the source codes, which is the main motivation

Eng. Proc. 2023, 56, 0. https://doi.org/10.3390/0 https://www.mdpi.com/journal/engproc

https://www.mdpi.com/article/10.3390/0?type=check_update&version=1
https://doi.org/10.3390/0
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://doi.org/10.3390/0
https://www.mdpi.com/journal/engproc

Eng. Proc. 2023, 56, 0 2 of 12

for the HLS based approach adapted in this work. The HLS based approach can be quite
useful for rapid prototyping of complex ideas, especially for systems with complex state
machines. To the best of author’s knowledge, there are limited published work where an
HLS based approach is used for a RISC-V core design. In [7], an HLS design is presented
but the source code is split into multiple files making it difficult to read. What is presented
in this work is a single file design which is relatively short, easily readable, and yet suitable
for an FPGA implementation with clock speeds of 100 MHz. Open source RISC-V cores can
be quite useful for computer architecture education too, see [8]. The proposed HLS RISC-V
RV32I core source codes are available in the public GitHub repo [?]. Finally, the author
would like to cite [?] as a source of inspiration for this work.

This paper is organized as follows: In Section 2, we summarize the RISC-V RV32I
instruction set architecture. In Section 3, a high level synthesis approach for design and
simulation is presented. Verilog simulations of our RISC-V SoC is presented in Section 4,
CMOS gate-level design using the open-source synthesis tool yosys and gate count details
are given in Section 5, and the FPGA implementation and testing are presented in Section 6.
In Section 7, a sample C program is used for testing the HLS generated core. A multi-core
RISC-V SoC approach is outlined in Section 8, and finally some concluding remarks are
made in Section 9.

2. RISC-V RV32I Architecture

In this section, we summarize the RISC-V RV32I instruction set architecture (ISA) [5?].
From a programming perspective there are 32 registers x0,· · · ,x31, and a program counter
PC all having 32-bits size. The register x0 is hardwired to 0, and the instructions are divided
into six different groups R (Register), I (Immediate), S (Store), B (Branch), J (Jump), and
U (Upper) [5?]. Full details of the instruction encoding and instruction fields are given
in [5?]. For the HLS implementation of the instruction decoder stage, we divide I type
instructions into IA (Immediate arithmetic), IM (Immediate memory), IJ (Immediate jump),
and IE (Immediate exception) groups. Furthermore, U type instructions are divided into U1
(Upper1), U2 (Upper2). All of the instructions are 32-bits in size, and have a 7-bit opcode
field located between bits 6 down to 0. Furthermore, there are 3-bit func3, 7-bit func7, and
imm fields, but not all instructions have all of these three additional fields [5?].

The sra and srai instructions use the most-significant bit (MSB) extension rule,
whereas the instructions sltu,sltiu,lbu,lhu,bltu, and bgeu use the zero extension rule.
The instructions ecall and ebreak are implemented as trap/halt. All unaligned memory
accesses are also implemented as trap/halt.

Table 1. RV32I instructions [5?].

Inst Type Description

add R rd = rs1 + rs2
sub R rd = rs1 - rs2
xor R rd = rs1 ˆ rs2
or R rd = rs1 | rs2
and R rd = rs1 & rs2
sll R rd = rs1 << rs2
srl R rd = rs1 >> rs2
sra R rd = rs1 >> rs2
slt R rd = (rs1 < rs2)?1:0
sltu R rd = (rs1 < rs2)?1:0

Eng. Proc. 2023, 56, 0 3 of 12

Table 1. Cont.

Inst Type Description

addi IA rd = rs1 + imm
xori IA rd = rs1 ˆ imm
ori IA rd = rs1 | imm
andi IA rd = rs1 & imm
slli IA rd = rs1 << imm[0:4]
srli IA rd = rs1 >> imm[0:4]
srai IA rd = rs1 >> imm[0:4]
slti IA rd = (rs1 < imm)?1:0
sltiu IA rd = (rs1 < imm)?1:0

lb IM rd = M[rs1+imm][0:7]
lh IM rd = M[rs1+imm][0:15]
lw IM rd = M[rs1+imm][0:31]
lbu IM rd = M[rs1+imm][0:7]
lhu IM rd = M[rs1+imm][0:15]

sb S M[rs1+imm][0:7] = rs2[0:7]
sh S M[rs1+imm][0:15] = rs2[0:15]
sw S M[rs1+imm][0:31] = rs2[0:31]

beq B if(rs1 == rs2) PC += imm
bne B if(rs1 != rs2) PC += imm
blt B if(rs1 < rs2) PC += imm
bge B if(rs1 >= rs2) PC += imm
bltu B if(rs1 < rs2) PC += imm
bgeu B if(rs1 >= rs2) PC += imm

jal J rd = PC+4; PC += imm
jalr IJ rd = PC+4; PC = rs1 + imm

lui U1 rd = imm << 12
auipc U2 rd = PC + (imm << 12)

ecall IE Trap/Halt
ebreak IE Trap/Halt

3. HLS Approach for Design and Simulation

The HLS design consists of the C++ file riscv32i.cc and the header file riscv32i.h.
There is also a C-simulation testbench file riscv32i_tb.cc. In this section we simply
summarize the main design ideas, but the full source code is available in our GitHub repo [?
].

We start with the outline of the design file riscv32i.cc, see the Outline I. This file has
only the cpu() function which has two pointer arguments. For C-simulation, they have the
usual semantics but for hardware synthesis, the first one is interpreted as a single-port RAM
and the other is implemented as a 4-bit write-strobe signal. The local array reg_file[]
is interpreted as a multi-port RAM for hardware synthesis, which will correspond to the
internal register file. The HLS tool has a standard C compiler which works according
to standard semantic rules for simulations, but for hardware synthesis semantic details
are different and can be controlled by using the #pragma HLS directives. Full details are
available in the Vivado HLS User Guide [?].

Eng. Proc. 2023, 56, 0 4 of 12

Outline I: Outline of the design file riscv32i.cc

#include "riscv32i.h"
#include <stdio.h>
#include <stdint.h>

// Write strobe
#define wstrb (*pstrb)

void cpu(arch_t mem[MEM_SIZE], volatile strb_t* pstrb) {
#pragma HLS RESOURCE variable=mem core=RAM_1P_BRAM
#pragma HLS INTERFACE ap_none port=pstrb

// Register file
arch_t reg_file[REGFILE_SIZE];

for (int i = 0; i < REGFILE_SIZE; i++)
reg_file[i] = 0;

arch_t pc = 0;

PROGRAM_LOOP: while (true) {
// Fetch
arch_t insn = mem[pc >> 2];

// Decode
opcode_t opcode = insn(6,0);
...

// Execute
switch (opcode) {

case OPCODE_R:
case OPCODE_IA:

switch(...) {
...
}
break;

...
}

// Write back to reg_file or memory or PC

// Branch handling
}

}

As seen in the Outline I, immediately after reset the program counter and all of the
registers are initialized to zero. There is an infinite while loop which will be exited if
an ECALL or EBREAK instruction is executed or an unaligned memory access is requested,
basically causing the CPU core to halt.

The HLS tool converts this while loop to a state machine with 11 states using the
one-hot encoding. Inside the loop, we have the usual instruction fetch, decode, execute,
write-back and branch handling. For example, insn = mem[pc » 2] will be synthesized as
a memory read operation, and opcode = insn(6,0) will be synthesized as selecting the
least significant 7 bits of the 32-bit value read from the memory. Note that, by using the
operator overloading features of C++, we are able to express slicing and concatenation in
C++, see [? ?] for full details. For example, in the instruction decode stage, we have the
lines

immI = (((ap_int<ARCH>) insn) >> 20);
immS = (immI(31,5), insn(11,8), insn(7,7));
immB = ...
immJ = ...
immU = (insn(31,12), ((ap_uint<12>) 0));

which corresponds to generating the 32-bit immediate value for various types of instruc-
tions. Note that ap_uint<p> is used for p-bit unsigned integers, insn(p,q) corresponds to
slicing, and (... , ... , ...) corresponds to concatenation. These are possible
because of the standard operator loading features of C++. Note that the C simulation
semantics and the hardware synthesis semantics are different.

There are various switch statements, which are synthesized as wide-multiplexers.
Nested switch statements correspond to cascaded multiplexers. To make sure that minimal
number of adders, comparators, barrel-shifters, etc. are synthesized, and no hardware
resources are wasted or underutilized, we define first program variables src1, src2, res
and then write a bunch of switch statements. This coding style may look a bit unusual, but
still highly readable, and is adapted purely for optimal hardware synthesis. In other words,

Eng. Proc. 2023, 56, 0 5 of 12

the C++ coding style used in HLS greatly affects the final generated hardware, and we tried
to keep a reasonable balance between C++ code readability and hardware optimality.

The HLS tool automatically generates Verilog files in human readable format, but
also allows C-simulation based testing using the file riscv32i_tb.cc. This C-simulation
testbench reads a text file of hexadecimal values in human readable format, initializes the
memory by using these values and passes the control to the cpu() function. Immediately
after return, all register values and the memory are dumped to separate text files. In
Figure 1, Vivado HLS C-simulation for the following short assembly program is given:

li x1,1020
sw x0,0(x1)

loop: lw x2,0(x1)
addi x2,x2,1
sw x2,0(x1)
j loop

Values stored in registers and memory as well as internal signals are displayed in the
debug window. Hexadecimal values for each instruction is written to the file mem.txt, and
conversion is done by using an online assembler tool. See [?] for full details.

Figure 1. Vivado HLS C-Simulation.

4. RISC-V SoC Simulation in Verilog

In this section, we present Verilog simulation of the HLS generated RISC-V core.
Either one can copy the HLS generated Verilog files to the Vivado project folder, or create
an IP object for block diagram based design. In this section, we simply copy and paste
the generated Verilog files from one folder to the other, but in the next FPGA based
design we will use the block diagram based design approach for better visualization of the
overall system.

Eng. Proc. 2023, 56, 0 6 of 12

Outline II: Outline of the System Verilog testbench

module sys_tb();

localparam T=10;

logic clk, reset, start, done, idle, ready, we, ce, vld;
logic [3:0] wstrb;
logic[9:0] addr;
logic [31:0] val_i, val_o;

cpu U1(
.ap_clk(clk),
.ap_rst(reset),
.ap_start(start),
.ap_idle(idle),
.ap_ready(ready),
.mem_V_address0(addr),
.mem_V_ce0(ce),
.mem_V_we0(we),
.mem_V_d0(val_i),
.mem_V_q0(val_o),
.pstrb_V(wstrb)

);

mem U3(.clk(clk), .we(we), .addr(addr),
.din(val_i), .dout(val_o), .wstrb(wstrb));

//SRAM U4 (.clka(clk), .wea({4{we}} & wstrb), .addra(addr),
// .dina(val_i), .douta(val_o));

initial clk = 0;
always #(T/2) clk = ~clk;

initial
begin

...
wait(idle==1);
$stop;

end
endmodule

The simulation testbench outline is given in Outline II, and the RAM with the I/O
devices are presented in Outline III. Basically, we have a simple system on chip consisting
of a single RISC-V RV32I core, a 4 KB RAM with single clock cycle read/write delay, and a
32-bit output port at memory address 0x0ff.

Outline III: Outline of the RAM and I/O devices

module mem(clk, we, addr, din, dout, wstrb);

input clk, we;
input [3:0] wstrb;
input [9:0] addr, read_addr;
input [31:0] din, dout;
logic [31:0] ram [0:1023];

always @(posedge clk)
begin

if (we) begin
if (wstrb[0]) ram[addr][7: 0] <= din[7: 0];
if (wstrb[1]) ram[addr][15: 8] <= din[15: 8];
if (wstrb[2]) ram[addr][23:16] <= din[23:16];
if (wstrb[3]) ram[addr][31:24] <= din[31:24];
/* add memory-mapped IO here */
if (addr == 255)

$write("%c", din[7:0]); // Change %c to %x
end
read_addr <= addr;

end
assign dout = ram[read_addr];

initial
$readmemh("C:/Users/onur/Desktop/MyWork/vivado/RISCV32I_HLS/mem.txt", ram);

//initial begin
// ram[0] = 32’h 3fc00093; // li x1,1020
// ram[1] = ...
//end
endmodule

In Figure 2, Verilog simulation results are shown. We are using the assembly program
given in the previous section, which basically writes the values 0, 1, 2, ... to the
address 0x0ff. The program counter PC is shown in the timing diagram, and the values
written to the output port at address 0x0ff are shown both in the simulation console and
the timing diagram. There is a specific reason why $write("%c", din[7:0]) is used for
the memory mapped I/O at address 0x0ff. If we use a C-compiler, and implement putc()
as a write to the I/O address 0x0ff, then all printf(...) and cout « ... will write to

Eng. Proc. 2023, 56, 0 7 of 12

the Verilog simulation console. This allows testing of more complex C/C++ programs with
the HLS generated RISC-V core.

Figure 2. Verilog simulation.

In our simulation testbench, we also have a block RAM option, shown as SRAM. This
allows testing the HLS generated RISC-V core using block RAMs available on most Xilinx
FPGAs, see Figure 3.

Figure 3. Block RAM should have single clock cycle read/write delay.

5. RISC-V RV32I Core Synthesis Gate Counts

In this short section, we present gate count results for the CMOS gate-level design
generated by the open-source synthesis tool yosys. The following script is for the synthe-
sis tool

read_verilog cpu.v cpu_reg_file_V.v
hierarchy -check
proc; opt; fsm; opt; memory; opt
techmap; opt
read_liberty -lib cmos_cells.lib
abc -liberty cmos_cells.lib
splitnets -ports; opt
stat

Eng. Proc. 2023, 56, 0 8 of 12

and the following gate-count results are reported by the synthesis tool:

=== cpu ===

Number of wires: 8282
Number of cells:

$_DFF_P_ 321
NAND 2689
NOR 3714
NOT 924

=== cpu_reg_file_V ===

Number of wires: 7714
Number of cells:

$_DFF_P_ 1056
NAND 4726
NOR 1505
NOT 387

In summary, a total of 1377 D-type flip-flops are used including the register file of
depth 32 and width 32. We have forced the synthesis tool to design using only two input
NAND and NOR gates, and with that constraint the total number of two-input NAND
gates is 7415, two-input NOR gates is 5219, and NOT gates is 1311.

6. RISC-V SoC Implementation on an FPGA

In this section, we will present a simple RISC-V SoC implemented on an FPGA. High
level details are presented in Figure 4, and elaborated design is shown in Figure 5.

ap_start

ap_clk

ap_rst

RISCV_I32

riscv_H1

ap_ctrl

ap_start

mem_V_ce0

mem_V_we0

ap_clk

ap_rst

mem_V_address0[9:0]

mem_V_d0[31:0]

mem_V_q0[31:0] pstrb_V[3:0]

CONCAT_0

Concat

In0[0:0]

In1[0:0]

In2[0:0]

In3[0:0]

dout[3:0]

VAND_0

Utility Vector Logic

Op1[3:0]

Op2[3:0]
Res[3:0]

SLICE_0

Slice

Din[31:0] Dout[7:0]

SRAM_4K

Block RAM

BRAM_PORTA

addra[9:0]

clka

dina[31:0]

douta[31:0]

wea[3:0]

REG_0

Output port

D[7:0]

CLK

CE

Q[7:0]

LED[7:0]

Figure 4. A RISC-V SoC block diagram for FPGA implementation.

The elaborated design has 1296 cells, and 1968 nets.

Eng. Proc. 2023, 56, 0 9 of 12

Figure 5. Elaborated design of the RISC-V SoC. The blue box on the right corresponds to the
register file.

Resource utilization of the implemented design is 1078 LUT (5.18%), 326 FF (0.78%)
and % 3 of the BRAM. The final system has 1.41 ns worst-case negative slack for the setup
time for 100 MHz clock. The power consumption is estimated as 81 mW at 100 MHz clock.
Figure 6 shows the FPGA implementation of the SoC for the Basys3 board. Note that the
whole SoC design fits into a portion of the clock region X0Y0. The large rectangular block at
the center of Figure 6 is the 4 KB RAM used for the system on chip.

Figure 6. RISC-V SoC FPGA implementation for the Basys3 board fits into a portion of the clock
region X0Y0.

We use the same assembly program given in Section 3, and make sure that the hex
values corresponding to assembly instructions are loaded to the SoC RAM. After the
system is reset using the button btnC, the CPU core can be started using the button btnU.
Figure 7 shows a Basys3 board implementation of our RISC-V SoC with the output port
connected to the on-board leds. Note that, bits 20 down-to 13 of the 32-bit value written to
memory is routed to the I/O port using the slice block shown in Figure 4. The assembly
program shown given in Section 3 has loop execution time of 170 ns, i.e., 17 clock cycles
loop execution time. The slicing block effectively slows down the counting speed so that
counting can be observed by naked eye.

Eng. Proc. 2023, 56, 0 10 of 12

Figure 7. RISC-V SoC implemented on a Basys3 board.

7. Testing with a Sample C Program
In this section, we use a short C program for simulating the RISC-V H1 core designed

earlier. Our testcode is given below

#define OUTPORT (0x0ff)
#include <stdint.h>

void main(void);
void main(void) {
((volatile uint32_t)OUTPORT) = ’R’;
((volatile uint32_t)OUTPORT) = ’I’;
((volatile uint32_t)OUTPORT) = ’S’;
((volatile uint32_t)OUTPORT) = ’C’;
((volatile uint32_t)OUTPORT) = ’\n’;
}

It is compiled with the GNU RISC-V compiler to generate the RAM image. As shown in the
Outline III, we have a $readmemh to initialize the RAM for the Verilog simulation. Again as
shown in the Outline III, all writes to address 0x0ff is forwarded to the simulation console
using the $write command. In summary, when the SoC is simulated with the GNU RISC-V
compiler to generated RAM image, we see the string ‘RISC’ written to the console followed
by a newline, which serves as another verification of the H1 core. In a future version of the
paper, we will be using longer C programs for a more comprehensive testing.

8. A multicore RISC-V SoC

In this section, we briefly summarize our multicore RISC-V SoC implementation. We
start by changing the memory interface from block RAM to a AXI master, i.e., change the
HLS directive as #pragma HLS INTERFACE m_axi depth=1024 port=mem. This will result
a different RISC-V RV32I core equipped with the AXI master interface. The Vivado HLS
generates a Verilog implementation with 42 states, which we call as the H2 core. For this
AXI equipped H2 core, we need to delete the write-strobe port, wstrb, and use

(mem[addr >> 2])(7,0) = res;
(mem[addr >> 2])(16,0) = res;
(mem[addr >> 2])(32,0) = res;

to implement byte, word, and double-word sized memory write operations respectively.
Note that, the bit-slicing operator (.,.) can be used both on the left and right-hand side
of expressions.

In Figure 8 we have a dual-core RISC-V RV32I system with 8K on-chip RAM, two
8-bit output ports, a 16-bit input port, and a single UART port. The H2 core does not have
a tightly coupled memory (TCM) inside the unit, but this will be addressed in a future
version of the paper. Basically, in the current implementation both cores are using the
on-chip static RAM over the AXI bus. All GPIOs and the UART unit are also on the AXI-bus.
We have added a JTAG to AXI unit which can be used for debugging and initialization of

Eng. Proc. 2023, 56, 0 11 of 12

the on-chip static RAM. For this dual-core SoC to function properly, both cores should have
different reset vectors so that they can execute different programs independently.

ap_start

ap_rst

ap_clk

sw[15:0]

clk_wiz

Clocking Wizard

reset

clk_in1

clk_out1

locked

rst_clk_wiz_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

cpu_0

riscv32i H2 (Pre-Production)

ap_ctrl

ap_start
m_axi_mem_V

ap_clk

ap_rst_n

cpu_1

riscv32i H2 (Pre-Production)

ap_ctrl

ap_start
m_axi_mem_V

ap_clk

ap_rst_n

jtag_axi_0

JTAG to AXI Master

M_AXI
aclk

aresetn

axi_smc

AXI SmartConnect

S00_AXI

S01_AXI

S02_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

M04_AXI

aclk

aresetn

axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_o[7:0]
s_axi_aclk

s_axi_aresetn

axi_gpio_1

AXI GPIO

S_AXI
GPIO

gpio_io_o[7:0]
s_axi_aclk

s_axi_aresetn

axi_bram_ctrl_0

AXI BRAM Controller

S_AXI

BRAM_PORTAs_axi_aclk

s_axi_aresetn

axi_gpio_2

AXI GPIO

S_AXI
GPIO

gpio_io_i[15:0]
s_axi_aclk

s_axi_aresetn

axi_uartlite_0

AXI Uartlite

S_AXI
UART

s_axi_aclk

s_axi_aresetn
interrupt

axi_bram_ctrl_0_bram

Block Memory Generator

BRAM_PORTA rsta_busy

LED0[7:0]

LED1[7:0]

usb_uart

Figure 8. A dual-core RISC-V SoC for FPGA implementation.

Based on our preliminary results, we see that the dual-core RISC-V system shown in
Figure 8 does fit into a Basys3 board.

9. Conclusions

In this paper, we have presented a high level synthesis approach for RISC-V RV32I
system design. The CPU core is designed and simulated at the C level, then the HLS
generated Verilog code is tested with RAM and I/O devices at the Verilog simulation
level. Finally, the complete system on chip design with memory and I/O devices are
implemented and tested on a low-cost FPGA board. Timing closure, resource utilization,
and power consumption estimates are also presented. CMOS gate-level design and gate
counts are generated by using an open-source synthesis tool. We have also outlined a
dual-core system design as well. The HLS generated CPU core has 14 states for a traditional
single clock cycle delay memory interface, and 42 states if the AXI bus support is needed.
For such more complex systems, design in Verilog will be more demanding and error prone
compared to an HLS based approach. Detailed analysis of multi-core designs are planned
for future research.

Funding: Funding is provided by NSF-1919855, Advanced Mobility Institute grants GR-2000028,
GR-2000029, and Florida Polytechnic University startup grant GR-1900022.

Acknowledgments: Author would like to acknowledge the support from NSF-1919855, Florida
Polytechnic University, and AMI.

References
1. Depablo, S.; Cebrián, J.A.; Herrero-de Lucas, L.C.; Rey-Boué, A.B. A very simple 8-bit RISC processor for FPGA. In Proceedings

of the FPGAworld Conference 2006, Stocholm, Sweden, 2006; pp. 9–15.
2. Archana, H.R.; Sanjana, T.; Bhavana, H.T.; Sunil, S.V. System Verification and Analysis of ALU for RISC Processor. In Proceedings

of the 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India,
19–20 March 2021; Volume 1, pp. 1785–1789. https://doi.org/10.1109/ICACCS51430.2021.9442045.

3. Wang, L.; Yu, Z.; Zhang, D.; Qin, G. Research on Multi-Cycle CPU Design Method of Computer Organization Principle
Experiment. In Proceedings of the 2018 13th International Conference on Computer Science Education (ICCSE), Colombo, Sri
Lanka, 8–11 August 2018; pp. 1–6. https://doi.org/10.1109/ICCSE.2018.8468694.

4. Eljhani, M.M.; Kepuska, V.Z. Reduced Instruction Set Computer Design on FPGA. In Proceedings of the 2021 IEEE 1st
International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering
MI-STA, Tripoli, Libya, 25–27 May 2021; pp. 316–321. https://doi.org/10.1109/MI-STA52233.2021.9464409.

5. Waterman, A.; Asanović, K. The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA version 20191213; RISC-V International:
2021.

https://doi.org/10.1109/ICACCS51430.2021.9442045
https://doi.org/10.1109/ICCSE.2018.8468694
https://doi.org/10.1109/MI-STA52233.2021.9464409

Eng. Proc. 2023, 56, 0 12 of 12

6. Höller, R.; Haselberger, D.; Ballek, D.; Rössler, P.; Krapfenbauer, M.; Linauer, M. Open-Source RISC-V Processor IP Cores for
FPGAs — Overview and Evaluation. In Proceedings of the 2019 8th Mediterranean Conference on Embedded Computing
(MECO), Budva, Montenegro, 10–14 June 2019; pp. 1–6. https://doi.org/10.1109/MECO.2019.8760205.

7. Rokicki, S.; Pala, D.; Paturel, J.; Sentieys, O. What You Simulate Is What You Synthesize: Design of a RISC-V Core from C++
Specifications. In Proceedings of the RISC-V Workshop 2019, Zurich, Switzerland, 2006; pp. 1–2.

8. Harris, S.L.; Chaver, D.; Piñuel, L.; Gomez-Perez, J.; Liaqat, M.H.; Kakakhel, Z.L.; Kindgren, O.; Owen, R. RVfpga: Using
a RISC-V Core Targeted to an FPGA in Computer Architecture Education. In Proceedings of the 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL), Dresden, Germany, 30 August–3 September 2021; pp. 145–150.
https://doi.org/10.1109/FPL53798.2021.00032.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/MECO.2019.8760205
https://doi.org/10.1109/FPL53798.2021.00032

	Introduction
	RISC-V RV32I Architecture
	HLS Approach for Design and Simulation
	RISC-V SoC Simulation in Verilog
	RISC-V RV32I Core Synthesis Gate Counts
	RISC-V SoC Implementation on an FPGA
	Testing with a Sample C Program
	A multicore RISC-V SoC
	Conclusions
	References

