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Abstract: Hand Pose Recognition presents significant challenges that need to be addressed, such as 

varying lighting conditions or complex backgrounds, which can hinder accurate and robust hand pose 

estimation. This can be mitigated by employing MediaPipe to facilitate the efficient extraction of rep-

resentative landmarks from static images combined with the use of Convolutional Neural Networks. 

Extracting these landmarks from the hands mitigates the impact of lighting variability or the presence 

of complex backgrounds. However, the variability of the location and size of the hands is still not ad-

dressed by this process. Therefore, the use of processing modules to normalize these points regarding 

the location of the wrist and the zoom of the hands can significantly mitigate the effects of these vari-

abilities. In all the experiments performed in this work based on American Sign Language alphabet 

datasets of 870, 27,000, and 87,000 images, the application of the proposed normalizations has resulted 

in significant improvements in the model performance in a resource-limited scenario. Particularly, un-

der conditions of high variability applying both normalizations resulted in a performance increment 

of 45.08%, increasing the accuracy from 43.94 ± 0.64% to 89.02 ± 0.40%. 
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1. Introduction 

Recent advances in deep learning and computer vision have been driving the devel-

opment of Human Activity Recognition (HAR) 12, which consists of classifying the phys-

ical activities that people perform. One of the HAR research fields is Hand Pose Recogni-

tion, which has numerous applications and a great impact on individuals who are deaf or 

have limited speech and communicate using Sign Language. 

In this context, many of the latest works focused on the use of MediaPipe to extract 

representative landmarks from hands combined with the use of neural networks. Using 

this approach, a previous work 3 obtained an accuracy of nearly 88% for the recognition 

of signs of the American Sign Language (ASL) alphabet using 87,000 images. 

Even using MediaPipe, there are still aspects such as the variability of the location of 

the hand or its size that can negatively impact the performance of the model that previous 

works have not been focused on. This variability can significantly hinder the accurate 

recognition of hand poses, particularly when employing deep learning algorithms be-

cause they heavily rely on data for training. Most datasets contain standardized hand po-

sitions and sizes images so the ones with diverse locations and sizes could be misclassified 

and may hinder the modelts to generalize. 

This paper aims to study the impact of hand location and zoom variability to propose 

efficient normalization techniques to mitigate these effects. 
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2. Materials and Methods 

This section describes the datasets used in the experiments, the signal processing, the 

deep learning approach, and the evaluation methodology to assess the performance of the 

model. 

2.1. Datasets 

In this work, we used three ASL Alphabet datasets. ASL Alphabet Test dataset 4 or 

so-called Dataset 1 has 870 images, 29 classes, 30 images per class and it is variable in 

terms of hand location and zoom. Synthetic ASL Alphabet 5 or so-called Dataset 2 has 

27,000 images, 27 classes, 1000 images per class and it is static in terms of hand location 

and zoom. ASL Alphabet 6 or so-called Dataset 3 has 87,000 images, 29 classes, 3000 im-

ages per class and it is variable in terms of hand location and zoom. 

2.2. Signal Processing 

2.2.1. MediaPipe Hands 

In this work, we used MediaPipe Hands 78, a specific module within the MediaPipe 

open source project capable of empowering real-time hand detection and tracking in im-

ages and videos, providing essential information regarding the precise position of 21 land-

marks or key points on each hand. Each landmark is composed of the x and y coordinates 

and is related to a specific point in the hands, as shown in Figure 1.   

 

Figure 1. The specific location of the hand landmarks extracted by MediaPipe Hands [8]. 

Once these points are extracted, they serve as input to a neural network, enabling the 

model to discern patterns and effectively differentiate between various signs. 

2.2.2. Modules to Include Location and Zoom Variability 

To analyse the effect of normalizations under more extreme conditions of variability, 

two modules have been designed to include location and zoom variability. Their applica-

tion on a dataset will generate another artificial dataset with the same number of images 

with a wider heterogeneity in terms of location or zoom. 

To include location variability, the first module adds or subtracts equiprobably the 

same random value to the coordinates of the landmarks of each image. In this way, a new 

dataset is generated with the landmarks relocated at new random locations. 

Similarly, the second module generates an artificial dataset by multiplying or dividing 

by the same coefficient all the coordinates of the landmarks. Thus, the size of the hands is 

randomly modified and the variability of the zoom is substantially increased. 

Under these conditions of higher variability, the performance of the system may de-

crease but the potential of normalization algorithms can be tested. 
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2.2.3. Normalization Algorithms 

To mitigate the location and zoom variability of the dataset, several algorithms have 

been developed. Norm_Loc algorithm used the landmark of the wrist (landmark 0) as the 

origin of coordinates and normalised all other points concerning it. In the Norm_Zoom 

algorithm, the maximum coordinate value is moved to the edge of the square of vertices 

(0,0), (0,1), (1,0), and (1,1), transforming the rest of the points proportionally so as not to 

lose the aspect ratio of the hand. The correct functioning of this normalization makes ei-

ther the largest X-axis coordinate or the largest Y-axis coordinate become worth 1, while 

the rest of the points are multiplied by the same coefficient. The last algorithm is called 

Norm_Loc_Zoom and applies the two previous modules sequentially. These algorithms 

mitigate the location and zoom variability because they standardize these image charac-

teristics considering the wrist location and the hand size. As these algorithms consist on 

simple mathematical operations, there is no increase in the overall computational cost. 

2.3. Deep Learning 

A deep learning structure with a feature learning subnet composed of a convolu-

tional layer and a classification subnet composed of fully connected layers is used to rec-

ognize the different pose hands. This architecture is represented in Figure 2.   

 

Figure 2. Deep learning architecture used in this work to classify the hand poses. 

First, a two-dimensional convolutional layer is added following the input layer. This 

layer uses the Conv2D function to apply 16 filters to the input of the network, performing 

convolution operations to facilitate feature extraction. This layers learn feature engineer-

ing by itself via filters optimization. The ReLU activation function is applied to the output 

of this layer to introduce non-linearity and enable the neural network to learn more com-

plex representations of the data. Next, the Dropout layer is added to regularize the net-

work and prevent overfitting. Specifically, a Dropout rate of 0.3 is applied, meaning that 

30% of the outputs from the previous layer are randomly deactivated during training. This 

helps to prevent the network from becoming too dependent on specific neurons and thus 

avoids overfitting. The Flatten layer converts the output of the previous layer into a one-

dimensional vector. The data is then processed by a Dense layer. In this case, this layer 

consists of 32 neurons directly connected to all neurons from the previous layer. Thus, the 

neural network performs a linear and non-linear transformation of the input data, allow-

ing the network to learn more complex relationships between the features extracted by 

the previous layers. Another Dropout layer with the same rate of 0.3 is applied afterward. 

The ReLU activation function is also employed. 
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Finally, the output layer consists of a dense layer with a number of neurons corre-

sponding to the number of classes. The softmax activation function is used to calculate the 

probability of belonging to each of the possible classes. The output layer produces the final 

outputs of the model, representing the probability distribution over the different classes. 

2.4. Evaluation Methodology 

In this work, k-fold cross-validation is used to assess model performance more accu-

rately and robustly. The data set is divided into k subsets (or folds) and the system is 

trained on k-1 sets, while the remaining set is tested. This process is repeated as many 

times as there are folds, obtaining a result for each one. In this way, a weighted average of 

the test results achieved can be calculated, obtaining a much more accurate and robust 

evaluation of the system, reaching to test all the available data. 

Regarding the evaluation metrics, the model performance is measured with accuracy, 

which is the most common metric in classification problems. It calculates the proportion of 

correctly classified examples out of the total number of examples. As seen in Equation (1), it 

is obtained by dividing the sum of true positives and true negatives by the total number of 

instances. This way, an increment of accuracy implies that the overall system better recognize the 

classes. In this work, we used a confidence interval with a 95% significance level attached to 

the accuracy values. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (1) 

3. Results 

This section provides the results for the different datasets, using the original ones and 

the ones obtained after including the artificial hand and zoom variability. This way, the 

system was tested with four variants for each dataset: the original dataset (when no nor-

malization algorithm was applied to the data) and the three versions with artificial varia-

bility in location, zoom, or both. 

In this work, we have been focused on improving the performance in a resource-

limited scenario, so we used 10 epochs and batch size value for each dataset according to 

this aspect and the number of frames in each dataset. 

3.1. Results for Dataset 1 

Table 1 below shows the accuracy rates obtained with Dataset 1 using a batch size of 

15. Under these conditions, the system is not able to learn enough from the data in the 

given number of epochs, giving very low accuracy rates when no normalization is applied. 

When applied, significant improvements in rates are observed, raising the accuracy from 

46.18 ± 3.49 to 88.17 ± 2.26 in conditions of high localization and zoom variability when 

applying the Norm_Zoom normalization, which offers better results than the application 

of both normalizations (Norm_Loc_Zoom). 
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Table 1. Results for Dataset 1. 

Dataset 1 Normalization Used Accuracy (%) Upgrade (%) 

Original * 

None 43.77 ± 3.47  

Norm_Loc 67.94 ± 3.26 24.17 

Norm_Zoom 78.63 ± 2.87 34.86 

Norm_Loc_Zoom 79.64 ± 2.81 35.87 

Artificial location 
None 34.22 ± 3.32  

Norm_Loc 61.45 ± 3.40 27.23 

Artificial zoom 
None 33.84 ± 3.31  

Norm_Zoom 76.84 ± 2.95 43 

Artificial location and zoom 

None 46.18 ± 3.49  

Norm_Loc 55.09 ± 3.48 8.91 

Norm_Zoom 88.17 ± 2.26 41.99 

Norm_Loc_Zoom 77.35 ± 2.93 31.17 

* The modules that include artificial hand location and zoom variability have been not applied. 

3.2. Results for Dataset 2 

For this dataset, we used a batch size of 1000. As can be seen in Table 2, the application 

of the different proposed normalizations supposes significant improvements in the differ-

ent variability conditions. 

The improvement of the accuracy was 45.08% in conditions of high variability in lo-

cation and zoom when both normalizations are applied. Moreover, the model achieves 

higher accuracy rates with zoom normalization than with location normalization. 

With the original dataset, the model achieves an accuracy of 87.61 ± 0.42 with 

Norm_Zoom against 83.61 ± 0.48 achieved with Norm_Loc. This difference becomes even 

wider under conditions of high variability of location and zoom: 87.96 ± 0.42 in contrast 

to 74.42 ± 0.56. 

Table 2. Results for Dataset 2. 

Dataset 2 Normalization Used Accuracy (%) Upgrade (%) 

Original * 

None 79.95 ± 0.51  

Norm_Loc 83.61 ± 0.48 3.66 

Norm_Zoom 87.61 ± 0.42 7.66 

Norm_Loc_Zoom 94.64 ± 0.29 14.69 

Artificial location 
None 48.15 ± 0.64  

Norm_Loc 87.22 ± 0.43 39.07 

Artificial zoom 
None 67.53 ± 0.60  

Norm_Zoom 91.91 ± 0.35 24.38 

Artificial location and zoom 

None 43.94 ± 0.64  

Norm_Loc 74.42 ± 0.56 30.48 

Norm_Zoom 87.96 ± 0.42 44.02 

Norm_Loc_Zoom 89.02 ± 0.40 45.08 

* The modules that include artificial hand location and zoom variability have been not applied. 

3.3. Results for Dataset 3 

With this dataset, we used a batch size of 5000. The proposed normalizations con-

tinue to result in significant improvements in scenarios specified in Table 3. 

By applying zoom normalization, not only much higher accuracy rates are obtained 

than when applying localization normalization, but superior results are obtained than 

those obtained by applying both normalizations. 
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Table 3. Results for Dataset 3. 

Dataset 3 Normalization Used Accuracy (%) Upgrade (%) 

Original * 

None 44.99 ± 0.39  

Norm_Loc 67.97 ± 0.36 22.98 

Norm_Zoom 85.03 ± 0.28 40.04 

Norm_Loc_Zoom 82.13 ± 0.30 37.14 

Artificial location 
None 58.68 ± 0.38  

Norm_Loc 61.18 ± 0.38 2.50 

Artificial zoom 
None 57.90 ± 0.38  

Norm_Zoom 88.56 ± 0.25 30.66 

Artificial location and zoom 

None 47.09 ± 0.39  

Norm_Loc 69.86 ± 0.36 22.77 

Norm_Zoom 86.43 ± 0.27 39.34 

Norm_Loc_Zoom 82.85 ± 0.29 35.76 
* The modules that include artificial hand location and zoom variability have been not applied. 

4. Discussion and Conclusions 

When a limited time of training is used, the performance of a hand pose recognizer 

model can decrease due to the variability of location and zoom in the instances used to 

train the neural network. The application of location and zoom normalizations results in 

significant accuracy improvements in this situation. These techniques are more impactful 

when the variability is higher. For example, the performance of the system has raised from 

43.94 ± 0.64% to 89.02 ± 0.40% (45.08%) applying both normalizations. 

Comparing both normalizations, the zoom normalization results in a better perfor-

mance of the model compared to the location normalization, reaching higher rates in all 

the studied scenarios. In addition, the application of zoom normalization has resulted in 

better results compared to applying both normalizations sequentially in some situations. 

From this, it can be deduced that this algorithm not only mitigates the effects of size vari-

ability, but it also mitigates those of location variability. 

For future work, it could be interesting to apply the proposed techniques in other 

datasets related to hand pose recognition with a wide variety of classes, such as thumb 

up, thumb down, open hand, or okay. 
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