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Abstract: Deep Learning (DL) for monitoring slowly evolving degradation processes typically in-
volves overcoming data drift, complexity, and unavailability issues resulting from dynamic and 
harsh conditions, and rarity of labeled failure patterns, respectively. While degradation patterns are 
mostly hidden in such complex data, observation-based DL leans towards producing uncertain pre-
dictions and/or overfit the model during training process. This problem is usually caused by the 
insignificance of certain data representations. Therefore, and particularly due to the sequential na-
ture of data in such a degradation process, it is necessary to consider neighboring observations to 
judge the accuracy of its representation or improving it. In this context, instead of traditional obser-
vation-based learning philosophy, this paper presents data-driven sequential mapping, while 
health indices can also be represented as a vector of sequential data and not as a single regressor 
output changing the model’s architecture. Using a dataset generated from a mathematical model 
mimicking bearing degradation life cycles and responding to the aforementioned three main chal-
lenges, a comparative study is built on investigating observation-based and sequence-based learn-
ing paths. According to a well-defined visual and numerical evaluation criterion, a sequence-based 
methodology reflects a better understanding of data representations through parameter tuning 
reaching better approximation and generalization. Such results support the necessity to such learn-
ing mechanism, especially for sequential data, dealing with some sort of correlation, and degrade 
controversially. Necessary files to reproduce the findings of this work are made available at: 
https://doi.org/10.5281/zenodo.8142676. 
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1. Introduction 
Monitoring of slowly degradation processes of a dynamic systems under real condi-

tions based on DL is generally a problem of building a regression model where a specifi-
cally reconstructed health index need to be predicted accurately for unseen health indica-
tors [1]. This usually poses a problem of data drift, complexity and unavailability [2]. The 
concept drift refers to massive changes in historical data features of a specific system 
lifecycle (i.e., run-to-failure data) [3]. Similarly, data complexity, and unavailability refers 
to different kind of distortions and rarity of failures patterns [4]. Such distortions could 
be the results of presence of noise and different outliers/anomalies in data affected by 
environmental conditions or physical damage propagation of the system itself. In the 
meanwhile, rarity of failure patterns is generally due to the fact that data is most of time 
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generated from physics-based models or accelerated aging experiments and not true deg-
radation phenomena for many reasons including financial and critical safety-related is-
sues reducing emulation quality to reality [5].  

It should be mentioned accordingly that this paper focuses on data drift problem 
while the DL model is required to be continuously update to meet up new changes in data 
and generalize better for unseen samples. As a result, research gaps in this paper will be 
revealed based upon analysis from this perspective. Basically, DL models for health mon-
itoring are generally constructed based on ordinary training process of mapping each ob-
servation features separately towards outputs driven at each time instant. This means 
when for instance an observation is miss presented due to any possible data distortion, 
sensors malfunction, or any other possible disturbances, the model will automatically be 
affected and may lead to bias, misprediction, overfitting, etc. [3]. In this case, it is necessary 
to mitigate such misleading information to maintain both approximation and generaliza-
tion process of the DL model [6].  

1.1. Research Gaps 
A according to the brief previous analysis, gap in research in this case can conse-

quently be highlighted as follow: 
1. Observation-based learning doesn’t consider correlation between times series data 

which could lead the model to bias if samples are mispresented due many aforemen-
tioned reasons;  

2. Observation-based learning doesn’t reflect the actual monitoring of concept drift and 
its detection at some point while data is subject to continuous change.  
Overall, a single-observation even if driven in a form of chunk-by-chunk is not ex-

pected to carry information to the learning model itself about neighboring samples. This 
is a true learning problem especially when slowly evolving degradation process monitor-
ing is a time series analysis problem and should considers this fact [7].  

1.2. Contributions 
Based on highlighted analysis criteria of concept drift in dynamic systems for moni-

toring slowly evolving degradation processes, the following contributions are proposed 
in this paper.  
1. Considering a sequence-based learning methodology: one of the main solutions 

that this paper proposes is to follow a sequence-based learning methodology for such 
mission. In this case, a sequence of observations of a specific length will be flattened 
and used as an input to the DL network. It should be mentioned that this is different 
from sequence-to-sequence learning presenting a series of encoding-decoding pat-
terns and processes as proposed in [8]. Therefore, the output of the DL regressor will 
be a vector instead of a single health index during sequential mapping. The tuning 
mechanism of the DL model will make it possible to get a sense of data changes and 
to improve its representations taking into account the loss result; 

2. Considering adaptive deep learning: an additional step of adaptive deep learning is 
taken into account in this case by introducing long-short term memory (LSTM) neu-
ral network. LSTM has a strong advantage as it allows for considering correlation 
between driven sequences of time series data. In another way, data drift in this case 
will be treated into two main steps, (i) preprocessing step where data is organized in 
sequences instead of observations, and (ii) where the learning algorithm itself con-
siders adaptive learning. This will further strength the learning processes an intro-
duces more accurate adaptive learning;  

3. Using data generated from a mathematical model: an experiment will be conducted 
on data generated from a mathematical model mimicking health degradation trajec-
tories of bearings responding to the three aforementioned health monitoring issues 
of slowly evolving degradation processes [4]. Compared to traditional observation-
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based DL, experiments encourage such data mapping especially for sequential data 
as of similar degradation behavior. Necessary files to reproduce the findings of this 
work are made online available at [9]. 

1.3. Outlines 
In attempt to make sure that contributions of this paper are clear and well-illustrated 

making this study reproducible, this paper is organized as follow. Section 1 is dedicated 
to data description. Section 2 is devoted to proposed methodology and used methods. 
Section 3 is dedicated to results and discussion. Finally, Section 4 concludes this work.  

2. Materials 
This work used a bearing degradation dataset extracted from a mathematical model 

describing an exponentially growing sinusoidal with additive noise and distortions in an 
attempt to mimic real-world conditions [10]. The dataset contains two subsets dedicated 
to outer race and inner race faults where each subset contains 20 sequences with different 
degradation rate. The degradtion rate is defined using different number of vibration win-
dow sizes with 30, 50, 65, 80, and 100 time cycles, respectively. For each speed profile, 4 
life cycles are generated modifying the parameters influencing the fault signatures ran-
domly to +/− 5%. Each window has 16,348 number of samples with a sampling frequency 
of 51.2 kHz. Meaning that we have 40 life cycles in total. Row-data from a single life cycle 
from the dataset is presented in Figure 1a clearly showing data exponential shift towards 
failure mode.  

In this work, data is subjected to preprocessing making it easier to extract any possi-
ble degradation signs at first glance. In this context, 11 time domain features same to the 
ones used in previous work in [6] (see [6], Section 2.3) are extracted. Similarly, the same 
denoising, outlier removing, and scaling steps in [6] are also followed to make sure the 
data is ready for DL model training. Accordingly, Figure 1b is an example of extracted 
features from life cycle in Figure 1a as some degradation patterns clearly can be seen in 
this situation. Based on data visualization in Figure 1a,b, the health index function is de-
fined as an exponential degradation function (see Equation (2) from [11]) better reflecting 
degradation mechanism then linear trends which also can be seen in Figure 1c. 

 
Figure 1. Dataset and preprocessing: (a) raw data of a single degradation life cycle; (b) prepared 
data for a single degradation life cycle; (c) health index of an entire life cycle. 

3. Methods 
In this work a long-short term memory (LSTM) network is involved in training pro-

cess as it is recommended for such data drift and complexity problems (see Section 6.2 
from [2]). In this context, for observation-based learning, a single layer LSTM with error-
trial tuned parameters of 10 neurons, 𝑙ଶ regularization parameter equal to 0.01, learning 
rate of 0.01 is used in this case. The same parameters are kept for sequence-based training 
while a sequence length was fixed to 6 observations. The only thing that changes in this 
case is the input and output layers sizes to fit changes in data mapping and sequence 
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length. Figure 2a is and example of an ordinary deep network familiarly used within deg-
radation process monitoring. While Figure 2b is the new network architecture reflecting 
sequence-based learning.  

A single observation of 
different features per each 
time Instant (observation 

length : d features)

A single-output regressor

A sequence of single feature 
per each time instant 

(sequence length:  l features)

A sequence of observations grouped and flatten as single vector input (d x l features)

A multi-output regressor

From observation-base 
to sequence-based

(a) (b)

1 d d x l1 l

1 1 l

 
Figure 2. DL model architecture: (a) observation-based DL model; (b) sequence-based DL model. 

4. Results and Discussion 
In this work, from each previously mentioned speed profiles we selected 3 life cycles 

for training and 1 file for testing. Meaning that 30 degradation profiles are used for train-
ing and 10 degradation profiles are used for testing. This includes files of both subsets for 
both inner and outer race fault scenarios. Mini-batch size, maximum number of epochs, 
and iterations are fixed to 10, 1000, and 3000 respectively for both DL networks under 
same tuning mechanism of error-trial basis. Two types of metrics are used in this case to 
judge the accuracy of training process; visual and numeric. Visual metrics including curve 
fitting examples, loss function behavior, and some scoring functions behavior as will be 
illustrated in the following numerical metrics. Numerical metrics include the root mean 
squared error (RMSE) in Equation (1) and the a Score function in Equation (2) which usu-
ally used to evaluate data-driven models for bearing degradation analysis [11]. 𝑛,𝑦 and 𝑦෤ 
are number of samples, desired health index, and predicted health index respectively. The 
score function penalizes early and late predictions differently to satisfy some decision 
making constraints related to maintenance planning [12]. In the meantime, the RMSE de-
signed to study the actual distance between prediction reflecting a real measurement 
meaning. 𝑅𝑀𝑆𝐸 = ଵ௡ ∑ 𝑦௜ − 𝑦෤௜௡௜ୀଵ   (1)

𝑆𝑐𝑜𝑟𝑒 = ቐ𝑒ି୪୬ (଴.ହ)ቀభబబ(೤ష೤෥)ఱ ቁ, ଵ଴଴(௬ି௬෤)ହ < 0𝑒ା୪୬ (଴.ହ)ቀభబబ(೤ష೤෥)ఱ ቁ, ଵ଴଴(௬ି௬෤)ଶ଴ ≥ 0  (2)

Figure 3a is showcasing the loss function behavior. For observation-based learning 
we can observe a faster convergence and less loss values. However, the model sooner 
stacks in overfitting problem showcasing fluctuations in loss values (e.g., iteration 1000, 
1500, 2500). In the meanwhile, despite late convergence and a bit bigger values of the loss 
function for sequence-based learning, the DL model shows better stability with no signs 
of overfitting. The curve fit examples of the test set for both inner race and out race profiles 
for speed profile of 100 time cycles in Figure 3b,c shows that sequence-based results are 
closer and smother leading to better predictions.  
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Figure 3. Obtained results: (a) loss function behavior; (b) curve-fit results example for inner race 
fault degradation cycles; (c) curve-fit results example for outer race fault degradation cycles. 

Figure 4 is dedicated to address the behavior of suggested scoring function. The score 
function designed to explain both early predictions scores (percentage error > 0) and late 
predictions (percentage error < 0) scores. These predictions have relation with mainte-
nance decisions. What we see in Figure 4 is observation-based prediction scores are fur-
ther dispersed compared to sequence-based ones when approaching value 1. This means 
that the DL model in the latter has a better generalization (prediction on the test set). This 
proves necessity to sequential learning in improving data presentation consequently im-
proving approximation and generalization through accurate tuning.  

 
Figure 4. Score function behavior. 

For numerical evaluation, the RMSE and Score results are showcased in Table 1. Re-
sults encourage using sequence-based mapping when dealing with such slowly evolving 
degradation process better then observation-based due to the clear gap between them in 
term of performances. Also, sequence-based methodology seems less computationally ex-
pensive than observation-based one, especially when computationally time results in Ta-
ble 1 confirming such information. 

Table 1. Final numerical evaluation results. 

Method RMSE Score Training Time (s) 
Sequence-based LSTM 0.0243 0.8401 16.4235 

Observation-based LSTM 0.0246 0.7989 30.9235 

5. Conclusions 
This work introduced an experiment of health index assessment using deep learning 

under slowly evolving degradation processes. It discussed the use of sequential learning 
philosophy versus traditional observation philosophy when training a DL model for 
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approximating a degraded function. A bearing degradation dataset of multiple faults sce-
narios is used in these cases while adopting LSTM learning rules for DL model reconstruc-
tion. Many visual and numeric assessment metrics are used to evaluate performances of 
investigated approaches. Results encourage adopting sequence-based methodology as it 
allows mitigating mispresented observations resulted due to harsh operating conditions. 
As a perspective, further highly dynamic systems need to be studied for such problem 
including deeper architecture and targeting other problems of data complexity and avail-
ability and not only data drift problems. By doing so, further performances details about 
such methodology will be revealed.  
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