
 
 

 

 
Eng. Proc. 2023, 56, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/engproc 

Proceeding Paper 

On the Use of Muscle Activation Patterns and Artificial  
Intelligence Methods for the Assessment of the Surgical Skills  
of Clinicians † 
Ejay Nsugbe 1,*, Halin Buruno 2, Stephanie Connelly 3, Oluwarotimi Williams Samuel 4 and Olusayo Obajemu 5 

1 Nsugbe Research Labs, Swindon, UK 
2 Limerick University; halin.bruno2021@gmail.com 
3 Hereford County Hospital, Wye Valley NHS Trust, UK; stephconnelly12@gmail.com 
4 School of Computing and Engineering, University of Derby, Derby, UK; o.samuel@derby.ac 
5 Sheffield University; olusayoobajemu@gmail.com 
* Correspondence: ennsugbe@yahoo.com 
† Presented at the 10th International Electronic Conference on Sensors and Applications (ECSA-10), 15–30 

November 2023; Available online: https://ecsa-10.sciforum.net/. 

Abstract: The ranking and evaluation of a surgeon’s surgical skills is an important factor in order to 
be able to appropriately assign patient cases according to the necessary level of surgeon competence, 
in addition to helping towards pinpointing the specific clinicians within the surgical cohort who 
require further developmental training. One of the more frequent means of surgical skills evaluation 
is via a qualitative assessment of a surgeon’s portfolio alongside other supporting pieces of infor-
mation; a process of which is rather subjective. The contribution presented as part of this paper 
involves the use of a set of Delsys Trigno EMG wearable sensors, which track and record the mus-
cular activation patterns of a surgeon during a surgical procedure, alongside computationally 
driven artificial intelligence (AI) methods towards the differentiation and ranking of the surgical 
skills of a clinician in a quantitative fashion. The participants for the research involved novice level 
surgeons, intermediate level surgeons and expert level surgeons in various simulated surgical cases. 
A comparison of different signal processing approaches has shown that the proposed approach can 
prove beneficial in the monitoring and differentiating of the skillset of various surgeons for various 
kinds of surgical cases. The presented method, could also be used to track the evolution of the sur-
gical competencies of various trainee surgeons at various stages during their training. 
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1. Introduction 
The ability to robustly assess and estimate a surgeon’s skillset is a core component of 

surgical training and education, and aids towards the identification of the competence 
level of a particular surgeon [1,2]. The literature suggests that current means towards the 
assessment of these surgical competence levels involve mostly the review of tapes, which 
are ultimately interpreted and assessed by a peer reviewer, and which opens the process 
to factors such as bias and subjectivity, in addition to being costly [3]. This has given rise 
to the application of alternate means of skills assessments, primarily based around the use 
of kinematic and virtual reality measures, alongside artificial intelligence methods for the 
classification of surgical competence levels with the aid of objective and quantitative pre-
diction machines [4–9]. 

Recent work has also seen the use of wearable sensors—attached to the surgeon’s 
upper limb—as part of the skill identification process, in an attempt to identify movement 
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and contraction patterns using electromyography (EMG) and accelerometers (Acc). This 
was notably done in the work by Soangra et al. [3] who, as part of their studies, applied 
both sets of wearable sensors in various anatomical locations in a group of participants 
comprising novice, intermediate and experts, towards distinguishing skill and compe-
tence levels across a number of simulated surgical tasks. From this, they were also able to 
identify a number of anatomical “hotspots” whose movements encode key information 
regarding the level of competence during the surgical tasks [3,10]. As part of the postpro-
cessing of the acquired signals from the wearable sensors, it can be seen that a concise list 
of features was extracted from the signals, which happened to be mostly nonlinear fea-
tures [3,10,11]. Although effective in the characterization of signals, these could be ex-
panded upon and concatenated with other linear features in order to boost the overall 
modelling accuracy [3,10,11]. In addition to this, the related literature is yet to explore the 
use of multiresolution and signal decomposition algorithms such as deep wavelet scatter-
ing (DWS), linear series decomposition learner (LSDL) and the empirical mode decompo-
sition (EMD), to name a few [12–14]. 

The contributions presented in this work present a first-stage investigation on the use 
of varied signal processing approaches towards the classification of surgical expertise 
based on the signals obtained from the EMG sensors in particular. In this paper, expanded 
signal processing approaches are used to differentiate between surgical skillset and ex-
pertise, for a specific task, based solely on the acquired signals from areas deemed to be 
anatomical hotspots (as determined by a previous study [3]), which span the deltoid, bi-
ceps and extensor carpi ulnaris (ECU). From this, it is immediately hypothesized that the 
assembled model can form a basis for the evaluation of surgical skills with a much more 
robust approach, which can be used to rank surgeons based on appropriate levels of ex-
pertise for different kinds of surgeries ranging from the basic all the way towards mini-
mally invasive and robotic surgeries. 

2. Materials and Methods 
2.1. Dataset 

The original data set was acquired from a broad list of subjects of varied surgical 
expertise at the Department of Urology at the University of California, Irvine, from which 
all subjects provided written consent to take part in the study [3]. The subjects comprised 
three expertise classes, as follows: novice surgeons who were individuals without surgical 
experience; intermediate surgeons who were primarily urology residents; and expert sur-
geons who were urology doctors with over five years’ worth of experience [3]. For the 
work done in this paper, one participant was taken from each class, as part of the pilot 
exercise. Various surgical tasks were performed and conducted, while the pegboard trans-
fer task was the surgical task used as part of the accompanying signal processing work 
done in this paper. The EMG electrode used was the DELSYS Trigno Wireless, Boston, 
MA, USA (for which data was sampled at 2 KHz), which was attached on a number of 
anatomical locations determined by the surgical ergonomics identified from prior studies 
[3]. Specifically, the deltoid was also chosen as a site of interest due to it being an area 
where laparoscopic surgeons report musculoskeletal pain [3]. Figure 1 is an image of one 
of the subjects performing the pegboard transfer task. 
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Figure 1. A subject performing the pegboard transfer task [3]. 

2.2. DWS 
DWS is an unsupervised feature extraction approach that is capable of extracting fea-

tures which are robust and continuous, and are a factor of a fused ensemble between the 
wavelet decomposition and the convolutional neural network (CNN) [15]. For the DWS, 
both the wavelets and filters are set as fixed values to prevent any form of iterative com-
putations of these values, and it is able to work well with a small set of samples [15]. As 
mentioned, the mathematical formalism of the method can be seen in published work by 
Andén and Mallat [15]. As part of the computational implementation, the DWS works 
with a CNN which works in an iterative sense, whilst performing convolutions through 
the wavelets and nonlinear modules, with an average scaling function [15]. 

The implementation of the CNN in this work involved the use of the Gabor wavelet 
as the mother wavelet with a scale invariance of 1 s, the filter banks of 8 wavelets per 
octave in the first filter bank, followed by 1 wavelet per octave in the second set of filter 
banks. 

2.3. Feature Extraction and Machine Learning Models 
Prior to feature extraction, the EMG signals were windowed using a series of win-

dows of 10,000 samples each, of which 10 windowed segments of these were used. The 
following features were extracted from the EMG signals, which comprised of a concate-
nation of both linear and nonlinear features: mean, waveform length, slope sign change, 
root mean squared, cepstrum, maximum fractal length, median frequency, simple square 
integral, variance, 4th order autoregressive coefficient, Higuchi fractal dimension, 
detrended fluctuation analysis, peak frequency, and sum of peaks [10,11]. 

The following machine learning models were used as part of this paper: decision tree 
(DT), linear discriminant analysis (LDA), linear support vector machine (LSVM), quad-
ratic support vector machine (QSVM), cubic support vector machine (CSVM), fine Gauss-
ian support vector machine (FGSVM) and K-nearest neighbors (KNN). The K-fold cross 
validation approach was utilized for the validation of all models, where K was chosen as 
10. 
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3. Results 
Table 1 shows the results for the various scenarios investigated using the raw signal, 

as well the DWS, with various models with different configurations. For the case of the 
raw signal, it can be seen that the results benefitted from a more complex model with a 
nonlinear architecture. It can be seen that the models with linear decision boundaries pro-
duced a dampened classification accuracy, which was seen to improve upon being trained 
with models with nonlinear decision boundaries. The DWS produced an improved clas-
sification accuracy across the majority of the models when compared with the raw signal 
results. The classification accuracy is seen to be improved by the use of the decomposition 
algorithm which provides unsupervised features, and therein shows that the concept of 
decomposing the signal is beneficial in this case study. The machine learning models with 
nonlinear decision boundaries were also seen to be the best performing in this case. 

Table 1. Classification accuracies of the various models for the raw signal and DWS. 

Model 
Raw Signal/Handcrafted Fea-

tures (%) DWS (%) 

DT 87 92 
LDA 83 86 

LSVM 76 90 
QSVM 90 97 
CSVM 93 99 

FGSVM 95 92 
KNN 95 99 

This shows that the proposed model and methods in this paper could serve towards 
enhancing the recognition accuracy of the use of wearable sensors for the classification 
and assessment of surgical skills expertise. 

4. Conclusions and Future Work 
The use of wearable sensors has gained momentum for the characterization of mus-

cular activation patterns as a means towards differentiating between the skillsets of vari-
ous surgeons for competency purposes. In this paper, we have attempted to use an ex-
panded feature extraction method, alongside the DWS, towards further analysis of the 
EMG signal from a group of subjects, in order to investigate the extent to which these 
methods aid towards differentiating various surgical skillsets. This exercise was done for 
the pegboard transfer task and for three subjects, i.e., one from each skill class. The results 
show that the DWS is capable of differentiating between the various classes to a greater 
degree than the raw signal.  

Subsequent work in this area would involve the use of a broader sample set compris-
ing of more subject participants and a variety of surgical tasks, including tasks involving 
the use surgical robots, along with data from accelerometers, to serve as a basis of com-
parison with the EMG. In addition, preprocessing of the data with the use of the LSDL 
signal decomposition algorithm—which has been seen to help boost the predictive per-
formance of machine learning algorithms—would also be performed [16,17]. 

To conclude, these interim results suggest that the use of wearable sensors does in-
deed carry appeal in the nonsubjective interpretations of the skillsets and competency of 
clinical surgeons.  
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