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Abstract: The advancements in technology have brought about significant changes in the automo-
bile industry. A system that combines the control of a physical process with computing technology 
and communication networks is called a cyber-physical system (CPS). The enhancement of network 
communication has transitioned vehicles from purely mechanical to software-controlled technolo-
gies. The controller area network (CAN) bus protocol controls the communication network of au-
tonomous vehicles. The convergence of technologies in autonomous vehicles (AVs) and connected 
vehicles (CVs) within Connected and Autonomous Vehicles (CAVs) leads to improved traffic flow, 
enhanced safety, and increased reliability. CAVs development and deployment have gained mo-
mentum, and many companies and research organizations have announced their initiatives and 
begun road trials. Governments worldwide have also implemented policies to facilitate and expe-
dite the deployment of CAVs. Nevertheless, the issue of CAV cyber security has become a prevalent 
concern, representing a significant challenge in deploying CAVs. This study presents an intelligent 
cyber threat detection system (ICTDS) for CAV that utilizes transfer learning to detect cyberattacks 
on physical components of autonomous vehicles through their network infrastructure. The pro-
posed security system was tested using an autonomous vehicle network dataset. The dataset was 
preprocessed and used to train and evaluate various pre-trained convolutional neural networks 
(CNNs), such as ResNet-50, MobileNetV2, AlexNet, GoogLeNet & YOLOV8. The proposed security 
system demonstrated exceptional performance, as demonstrated by its results in precision, recall, 
F1-score and accuracy metrics. The system achieved an accuracy rate of 99.90%, indicating its high 
level of performance. 
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1. Introduction 
The emergence of connected and autonomous vehicles represents a shift towards a 

transportation system that utilizes intelligent automation and robust communication to 
replace traditional human-operated vehicles. These vehicles had designed to operate with 
the same level of intelligence, control, and agility as human drivers while minimizing the 
potential for errors in decision-making, making it the future of transportation [1]. AVs 
integrate advanced vehicle technologies to enable self-driving capabilities. AVs can per-
form complex functions, such as lane departure alerts, identification of traffic signs and 
collision avoidance, which can decrease the burden on human drivers [2]. The increasing 
interest in autonomous vehicles has led to a proliferation of research and development 
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efforts in the field, with various companies and organizations investing in developing au-
tonomous vehicle technology. Furthermore, AVs can have a positive environmental im-
pact by decreasing energy consumption and air pollution. These vehicles are composed 
of intricate systems that necessitate advanced computing, sensing, actuation, networking 
and communication technologies [3]. 

Initially, manual vehicles require additional connectivity to the exterior, making it 
challenging for hackers to attack as they would need physical access to the vehicle. The 
researchers could control the vehicle through wired connections, such as altering the dis-
play dashboard, shutting down the engine, and interfering with steering. With the ad-
vancement of AV technology in recent years, vehicles are equipped with various sensors 
to aid human driving. Figure 1 show the overview of CAVs cyberattacks AVs system [4]. 

 
Figure 1. CAVs cyberattacks Holistic View. 

The use of communication protocols is essential to guarantee the safety and stability 
of AVs. One commonly used protocol is CAN, which provides high-speed communica-
tion within the vehicle. Time-Triggered CAN (TTCAN) offers time-deterministic commu-
nication, an improvement from the basic CAN protocol. Local Interconnect Networks 
(LIN) connect low-cost sensors and actuators, providing a simple and economical com-
munication solution [5]. FlexRay is a new protocol that offers high-speed and dependable 
communication for critical applications requiring real-time data transmission, like ad-
vanced driver assistance systems (ADAS). In autonomous vehicles, communication pro-
tocols such as CAN, TTCAN, LIN, and FlexRay are vital in addressing data transmission, 
real-time data analytics, bandwidth restrictions, privacy and security [6]. The vulnerabil-
ity of autonomous vehicles to security threats increases with their level of autonomy. The 
information from various control systems is transmitted to every node in the network 
through the Controller Area Network bus [7]. With data accessible to all nodes, it can 
expose the system to potential security risks from internal or external sources. Potential 
attack surfaces for AVs include the Airbag Electronic Control Unit (ECU), USB, Bluetooth, 
and the Vehicle Access System ECU. To ensure these vehicles safe and reliable operation, 
they must be equipped with advanced communication and sensing technology to coun-
teract these potential threats [8]. 

Fully autonomous vehicles can carry out driving tasks and make instantaneous ad-
justments without requiring any input from the driver. The SAE has established a catego-
rization of six levels to measure vehicle automation, taking into consideration factors such 
as the vehicle’s ability to manage driving tasks and responses, detect objects and events, 
make corrections in case of system failures, and operate within specific domains. The re-
sponsibilities of the driver and the autonomous vehicle system vary with each level of 
automation, which can be seen in summary [9,10]: 

Level 0: Driver-Only Control: At Level 0, the driver must handle all vehicle driving 
and control responsibilities. This includes being alert to their surroundings and respond-
ing to any events. If the system encounters any problems, it is up to the driver to fix the 
issue. This level does not specify any operational design domain. 

Level 1: Driver Assistance: At Level 1 of automation, the vehicle is operated by col-
laborating with the driver and the system. The system can either control speed or direc-
tion, but not both. The driver is required to supervise the environment and respond to any 
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situation. Additionally, if the system fails, the driver must control the vehicle. The opera-
tional design domain is also restricted to a small area at this level. 

Level 2: Shared Control: At this level, the system is capable of controlling both the 
vertical and horizontal motions of the vehicle at the same time. However, the driver must 
still monitor the environment and take action if needed. In case of a system malfunction, 
the driver must regain vehicle control. The operational design domain is still limited at 
this level. 

Level 3: Conditional Driving Automation: The system can control both longitudinal 
and lateral motion. It also monitors the environment and reacts to events and objects. If 
the system fails, the driver should be ready to respond to its request or take control of the 
vehicle. The operational design domain’s extent is restricted at this level. 

Level 4: Highly Automated Driving: The vehicle’s system can manage both longitu-
dinal and lateral driving tasks at the same time. The system is in charge of observing the 
surroundings and handling any events. If there is a system malfunction, the system must 
be able to recover without driver intervention. There are specific boundaries to the sys-
tem’s operating range at this level of automation. 

Level 5: Complete Driving Automation: The vehicle can control both longitudinal and 
lateral driving tasks at the same time. The system is accountable for observing the envi-
ronment and taking appropriate measures. In case of system failure, the vehicle’s technol-
ogy can recover without human intervention. This level of automation has no limitations 
in the operational design domain. 

The vulnerability of CAVs to cyberattacks is amplified by their connectivity and au-
tonomy capabilities when exchanging data with other vehicles and the environment. Au-
tonomous vehicles face risks from cyberattacks such as cloning essential fobs, attacks on 
radars and telematics services, deception of sensors using ultrasonic or lidar technology, 
camera sensor attacks, and others. To counter these threats, a method has been proposed 
using a convolutional neural network (CNN) that has already been trained to detect 
cyberattacks on the connected physical parts of AVs through the CAN communication 
protocol. The technique employs transfer learning, a deep learning strategy that utilizes 
pre-trained models for various systems. This is important because it can be challenging 
and costly to gather enough data to train a model through traditional machine-learning 
methods. The process of transfer learning involves adjusting a pre-trained model to a new 
and related model, enabling the model to learn from data from diverse domains [11,12]. 

This study proposes a solution for detecting cyberattacks on autonomous vehicles 
using a pre-trained CNN and the CAN communication protocol. The method consists of 
incorporating the CAN protocol into an AV simulation model that is built using Simulink 
from MathWorks. This model generates the dataset that is used to pre-train the CNN. The 
IIDS implemented uses four pre-trained networks and evaluates each network’s perfor-
mance. The results showed that the YOLOV8 network had the best performance, with an 
F1-score of 99.90%. The manuscript comprises four sections. The first part scrutinizes the 
latest studies on autonomous vehicle security. The second section delineates the research 
process, which includes integrating the AV-CPS. The third part presents the discoveries 
and debates, whereas the last segment concludes the paper.  

2. Proposed Methodology 
This study segment elaborates on the simulation methodology employed for analyz-

ing autonomous vehicles. This section explains how the simulation of cyber-physical sys-
tems is incorporated to create the AV-CPS model. It also describes how data is collected 
from the AV-CPS simulation and discusses the application of this data in transfer learning. 

2.1. AV Simulation Scheme 
The research employs a software-based simulation model to assess the performance 

of a self-driving car system before its deployment. The simulation model comprises an 
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ego vehicle (i.e., the self-driving car) and a lead vehicle. The former utilises an adaptive 
cruise controller (ACC) to maintain a safe distance from the latter while tracking its posi-
tion and velocity. The simulation model integrates three crucial components: the ACC, a 
sensor to detect the position of both vehicles and a sensor to record their velocity. The 
sensor measurements are relayed to the ACC, which subsequently regulates the speed of 
the vehicle in response to the movements of the lead vehicle. 

2.2. CAN Communication Network 
This study employed a simulation model of a self-driving car system to assess its 

performance before deployment. The simulation model for the AV-CPS was based on the 
ACC system, which consisted of an ACC, a position sensor, and a velocity sensor. How-
ever, there was no communication system component included in the model. To address 
this, the researchers used the Vehicle Network Toolbox on Simulink to implement a com-
munication system based on the CAN protocol. The study focused on establishing the AV-
CPS communication system using the CAN communication component to transmit and 
receive messages between the various elements. The signals were encapsulated and dis-
patched to the assigned CAN device, then received and decomposed into signals. 

2.3. Autonomous Vehicle Cyber-Physical System 
This study implemented an AV-CPS architecture to investigate the performance of 

the self-driving car system, which consists of multiple components such as sensors, two 
CAN communication nodes, a controller, and actuators. The first communication node 
(Node A) receives and transmits signals such as the actual location, position, and speed 
of the ego and lead vehicles, as well as a constant time gap and desired speed. These sig-
nals are then used by the ACC to generate a control signal, which is sent to Node B. Node 
B then receives and transmits this control signal to the actuators, where it is converted into 
a mechanical movement that changes the speed of the vehicle. The entire process is re-
peated in a closed-loop simulation for a total of 81 s. 

2.4. Generating Dataset 
This research developed a cyber-physical system-based autonomous vehicle simula-

tion, integrating a CAN communication system. The simulation model comprised a lead 
vehicle and a self-vehicle. The latter utilized sensors to monitor vehicles’ position and ve-
locity, maintaining a safe distance through the ACC. However, the researchers considered 
a compromised communication node scenario where false data was inserted into the ego 
vehicle’s position sensor, causing the ACC to produce erroneous control signals. The data 
generated by the simulation was in a numerical format and consisted of five attributes, 
namely the actual position and velocity of both vehicles and an anomaly detection label. 
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Figure 3. Architecture of the Proposed Pre-trained Models. 

2.5. Transfer Learning 
This section details the utilization of transfer learning in the research, which involves 

adapting pre-trained models to improve performance on a related task. This study uti-
lized pre-trained models such as MobileNetV2, GoogLeNet, ResNet-18, and YOLOv8, all 
containing layers like Relu, Pooling, and Fully connected layers to ensure accurate image 
classification show in 3. These models have Relu, Pooling, and Fully connected layers to 
improve image classification. The final layer of each model has been modified to output 
only normal or anomaly categories. The dataset was preprocessed to be compatible with 
each CNN model. During AV-CPS simulation, feature responses were stored as numerical 
values in a matrix, which was reshaped from 1D to 2D. The resulting 2D matrix was saved 
as an image, and normal/anomaly images were stored separately for analysis. 

3. Results and Discussion 
This section covers the specifics of the experimentation, such as the tools and equip-

ment employed to carry out the study. Additionally, the section will present and analyze 
the outcomes of the research. The study utilized Matlab and Simulink for experiments. 
Matlab is a programming language platform, while Simulink is a design platform based 
on Matlab. The AV simulation model was created using both Matlab and Simulink by 
MathWorks. The researchers used the Simulink network toolbox to integrate the CAN 
protocol component into the AV simulation. Matlab was used for implementing and eval-
uating pre-trained CNNs. A computer with a GPU was utilized for experiments to en-
hance performance and reduce computation time. Table 3 lists the software and hardware 
employed in the study. 

Figure 4 displays the overall steps taken in this research’s experiments. The initial 
stage involved importing a dataset into Matlab. The images were preprocessed by resizing 
them to comply with the input size requirements of pre-trained CNNs programmed to 
classify images as either normal or anomalous. The dataset contained two folders, one 
with normal images and the other with anomalous images. It was split into 70% for train-
ing and 30% for testing and validation. The dataset included 20,000 images, half normal 
and the other half anomalous. To ensure the training process’s accuracy, a 5-fold cross-
validation technique was employed, and the expected output of each model was either 
normal, indicating no attack, or anomalous, indicating that an attack had occurred. 
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Figure 4. Research Experiment Steps. 

The study evaluated pre-trained CNN model performance using several metrics, in-
cluding precision, recall, f1-score, and accuracy classification. The accuracy of the models 
was determined by calculating true positive (TP), false positive (FP), false negative (FN), 
and true negative (TN). Table 4 displays the accuracy of the models, with YOLOV8 per-
forming the best. Although all models had 100% precision, recall values ranged from 
98.65% to 99.00%, indicating the misclassification of some anomalous images as normal.  

To substantiate our findings, we conducted a comparative analysis of the perfor-
mance outcomes of our research about existing intrusion detection system approaches 
employed in autonomous vehicle systems. In general, pre-trained convolutional neural 
networks such as those discussed in research papers ResNet-50, MobileNetV2, AlexNet, 
GoogLeNet & YOLOV8 exhibited superior performance compared to alternative models 
such as artificial neural networks (ANN) and Bayesian networks, as indicated in Table 1. 

Table 1. Performance Comparison of Pre-trained Model Accuracy. 

Pre-Trained Model Precision Recall F1 Score Accuracy 
ResNet-50 100% 98.86% 99.40% 99.40% 

MobileNetV2 100% 98.65% 99.35% 99.35% 
AlexNet 100% 98.90% 99.45% 99.45% 

GoogLeNet 100% 98.96% 99.50% 99.50% 
YOLOV8 100% 99.00% 99.90% 99.90% 

4. Conclusions 
The research proposed an IIDS that uses the CAN to identify cyberattacks on the 

physical components of AVs. The CAN was included in an AV simulation by MathWorks 
to illustrate the CPS concept, resulting in an AV-CPS. The AV-CPS created the dataset, 
which was transformed into images and inputted into pre-trained CNNs such as ResNet-
50, MobileNetV2, AlexNet, GoogLeNet & YOLOV8. The performance of each network 
was assessed and compared, and YOLOV8 had the best performance, with an F1 score of 
99.90%. The proposed system’s block architecture makes it adaptable and resilient to other 
CPS frameworks. The study suggested extending the AV-CPS system architecture to other 
CPS domains such as smart grids and drones. 
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