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Abstract: Particle dispersion is an important research area as this provides insight into how 
a particle behaves, how long the particle will fall, how far the particle will travel away 
from the source, and its concentration at a particular time and point of location. In this 
review paper, different models used to study the dispersion of particulate matter are 
explained and compared. The mechanism and factors that affect the dispersion of particles 
are discussed. Applications of the atmospheric dispersion model are also given. 
Moreover, the topics sufficiently lacking in the literature and insight into further areas 
that should be improved are discussed. 
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1. Introduction 
When a solid and a liquid combine, the solids clump together. These big clusters of 

particles may cause the liquid to disperse unevenly. Due to how little they are, we might 
not be able to look at the materials and see the enormous clusters. We can determine the 
sizes of your particles by putting them through a particle analyzer. We can confirm that 
the grouping of particles may still be too large based on the range in which the particles 
fall. 

In regulatory and epidemiological contexts, modeling the dispersion of air 
contaminants is crucial. Even though most modeling ideas originated in the 1980s, 
dispersion models have been optimized and improved since then. Modeling techniques 
must be used with care to quantify component interactions. Significant propagation 
patterns of the variables can be captured by the quantified interactions, which can 
improve comprehension of the system and recognize the essential connections and 
elements that shape the system’s behavior. Applications using fluid-solid interaction (FSI) 
entail the integration of the structural mechanics and fluid dynamics fields [1]. Several 
new models, like computational fluid dynamics, have also been developed. Moreover, the 
accuracy of the data acquired is continuously being enhanced by next-generation 
representations [2]. 

2. Theoretical background 

2.1. Modeling air quality 
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The atmospheric mechanisms that spread a pollutant generated by an origin are 
described by dispersion modeling, which uses numerical equations. The levels at specific 
downstream receptor sites can be predicted using a dispersion model according to 
emissions and meteorological parameters. The National Ambient Air Quality Standards 
(NAAQS) and other regulations are observed using these air quality algorithms. Modeling 
dust dispersal from extraction processes is based on four quantitative techniques: the 
Lagrangian Model, Eulerian Model, Gaussian Model, and Box Model. 

2.1.1. Lagrangian Approach 
According to the Lagrangian method, the fluid is thought to be made up of several 

fluid particles, and each fluid parcel is followed as it moves to measure how its properties 
change over time. 

𝑉𝑉 = 𝑉𝑉(𝑡𝑡), (1) 

Imagine being in a car and seeing the vehicle’s displacement, speed, and acceleration 
over a period. Because it follows a material (fluid) particle, a Lagrangian characterization 
is also known as a material description. This approach uses the qualities as a function of 
time to characterize the fluid motion. 

In terms of atmospheric dispersion, a moving reference grid based on the wind 
direction and the general direction of plume flow is used by the Lagrangian model to 
compute the dispersion of plume parcels. The reference grid follows the plume as it 
moves, and the movement of the plume is modeled using an arbitrary walking approach. 
The likelihood function is constructed from site-specific meteorology, distribution of 
particle sizes, and particle density. Despite its dynamic character, the Lagrangian model 
has limitations [3]. 

The Lagrangian model is based on the Advection-Diffusion equation. The equation 
called advection-diffusion is a simplified version of the Navier-Stokes equation. This 
equation illustrates the particle motion that is affected by the air movement and diffusion 
that is turbulent. The left-hand side of the equation represents concentration change in a 
localized area at a point in time, while the letter Q represents the emission rate. Moreover, 
the terms, without the k constant, on the right-hand side of the equation denote the 
movement in three directions, x, y, and z, caused by the average wind speed. Lastly, the 
three factors with the k constant depict the movement caused by turbulent motions. The 
k constant means the coefficient of diffusion [3]. 

2.1.2. Eulerian Approach 
In Eulerian analysis, measurements are made at a predetermined fixed location in 

space, where an observer at a particular location’s concentration as a function of time is 
described. “Field description” also refers to the Eulerian consideration or description. The 
Eulerian approach never concentrates on specific fluid portions; instead, it studies the 
characteristics of the fluid as it passes by a specific fixed point. 

The fluid parameters consequently become a function of space and time in Eulerian 
analysis. The z represents the vertical axis which typically denotes height or pressure.  

𝑉𝑉 = 𝑉𝑉(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) (2) 

In atmospheric dispersion, the difference between the Eulerian and Lagrangian models 
is that the former uses a fixed reference grid. In contrast, the latter makes use of a moving 
grid. In contrast to the Eulerian model, which tracks a static grid as the pollution plume 
passes by, both models track the movement of pollution plumes over time [4]. 

Like Lagrangian models, the advection-diffusion equation is also the mathematical 
equation on which the Eulerian model is typically based. However, the method by which 
the two models simulate is different. Lagrangian models simulate the movement of 
particles to a frame that is moving with the average stream, akin to a person moving 
simultaneously with the particles. Because of this, the forward and backward routes can 
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be generated, which can aid in visualizing the matter’s starting and end points in the 
atmosphere. 

Both the Eulerian and Lagrangian models are versatile. The two models can be used in 
different mixtures, conditions of the system, the area of the land, and the heights and 
depths of the land. These two models have an average of 1 kilometer to 100,000 kilometers 
resolution of spaces. Another configuration of Eulerian and Lagrangian models is a model 
that uses Computational Fluid Dynamics as a basis. Computational Fluid Dynamics offers 
a solution to the Navier-Stokes equation. Complicated terrains or simulation that would 
need a scale close to real-life proportions is suitable for Computation Fluid Dynamics. 
However, Computational Fluid Dynamics needs an enormous amount of data, unlike 
other models, to achieve this. 

2.1.3. Gaussian Model 
Gaussian dispersion models assume that the statistical distribution of pollutants is 

typically distributed. The two-dimensional (y and z) Gaussian plume grows over time. 
The following conditions must be true for the emission and atmospheric conditions: no 
chemical reactions must occur, and wind speeds must always be equal to or greater than 
1 m s-1. These conditions are all prerequisites for Gaussian plume models. Gaussian 
models are often applied when simulating the propagation of buoyant pollutants in air 
plumes. The commonly employed model is as follows: 

𝑋𝑋 =
𝑄𝑄

2𝜋𝜋𝜇𝜇𝑠𝑠𝜎𝜎𝑦𝑦𝜎𝜎𝑧𝑧
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where X denotes the hourly concentration at downwind distance; µs is the mean wind 
speed at pollutant release height; Q is the pollutant emission rate; σy is the standard 
deviation of lateral concentration distribution; σz is the standard deviation of vertical 
concentration distribution; H is pollutant release height (stack height); and y is the 
crosswind distance from source to receptor. 

Equation 3 has a steady state assumption. The equation estimates the concentration at 
any point in the direction of the source in which the wind is blowing. This equation also 
assumes the Gaussian distribution of particulate matter in the direction in which the wind 
is against the line of travel. 

There are two Gaussian models: Gaussian plume and Gaussian puff models. The 
Gaussian model that comprises a permanent point is a Gaussian plume. A Gaussian 
model contains the equation encapsulated in the Lagrangian model. A Gaussian puff 
model breaks a continuous plume into individually separated and distinct packets of 
particulate matter. In this model, the concentration of particles can be traced back to the 
puff that contributed to the bulk of the particles. 

With point source emissions, the Gaussian plume model is among the most popular 
and relies on employing empirical factors (sigma’s) as a function, analyzing the transit 
and diffusion of the air pollutant particle of the atmosphere’s stability. Environmental 
permitting processes frequently rely on Gaussian plume models, such as the Industrial 
Source Complex (ISC), AERMIC Model of AERMOD software, and CALPUFF, developed 
by the United States Environmental Protection Agency (US EPA), and the Atmospheric 
Dispersion Modeling System-Urban (ADMS-Urban), developed by Cambridge 
Environmental Research Consultants (CERC). Thus, although AERMOD software has 
superseded the ISC model, the latter is still widely utilized. This can be explained by the 
lack of or inaccessibility of input data needed by AERMOD software and other more 
complex models [5]. 

Among the inputs are the pollutant release rate, release height, wind speed (at the 
reference height, frequently the height at which emissions are released), mixing/inversion 
height, and the vertical and horizontal dispersion variables. Additionally, the plume’s rise 
or fall can be modeled. The plume is expected to quantitatively reflect from the ground or 
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the upper boundary layer of air when it reaches these surfaces. This may eventually give 
the erroneous impression that contaminants are collecting at ground level, which the 
model can consider [4]. 

2.1.4. Box Model 
The approach for modeling air quality that is the simplest is the box model. The box 

model portrays the airshed as a straightforward box with uniformly concentrated 
contents. Following is the model that is typically applied: 

𝑑𝑑𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

+ 𝑢𝑢𝑑𝑑𝑖𝑖𝑖𝑖𝑊𝑊𝐻𝐻 − 𝑢𝑢𝑑𝑑𝑊𝑊𝐻𝐻 = 𝑄𝑄𝑄𝑄 (4) 

where C is the concentration of pollutants throughout the box; Cin denotes the pollutant 
concentration entering the box; Q is the pollutant emission rate from the source per unit 
area; V is the volume of the box; A is the horizontal area; W is the box width; H is box 
height (mixing height); and u is wind speed normal to the box. 

2.2 Modeling particle-particle interactions on dense solid-liquid suspensions in stirred vessels 
Solid-liquid suspensions are widely found in industrial manufacturing operations. 

Both liquid-particle and particle-particle interactions affect how the solid-liquid 
suspension behaviors behave. This study examines the importance of particle-particle 
interactions in solid-liquid mixing vessels using a Eulerian-Eulerian model to define the 
dynamics of the suspension. Using a modified version of the kinetic theory of granular 
flow (KTGF), solid pressure and viscosity calculations are made while considering the 
impact and friction of coarse particles. Semi-empirical models are compared to the 
expected solid phase holdup and velocity. The effects of various essential model 
parameters are also examined. The multi-fluid model’s robustness is confirmed by 
comparing computational fluid dynamics simulations with experimental data, 
demonstrating an acceptable agreement level. The suggested model is then used to 
explore the significance of particle-particle interactions by looking at the effects of particle 
size and solid loading. The simulation findings reveal that particle-particle interactions 
can alter suspension properties in the case of oversized particles. Solid–liquid suspensions 
in agitation vessels are essential for crystallization, polymerization, catalytic reactions, 
and mineral and water treatment. CFD simulations have been used to predict the 
hydrodynamic characteristics of solid–liquid two-phase flows, leading to insights into 
particle concentrations and velocity distributions. However, accurately simulating the 
suspension behaviors in stirred tank reactors is still challenging. 

The Eulerian–Eulerian multi-fluid method considers solid particles as continuous 
phases. Particle–particle interactions can be considered through the kinetic theory of 
granular flow (KTGF) model. Research has shown that the roughness of particles exerts a 
significant effect on stress and particle rotation. Non-ideal particle–particle collisions are 
modeled based on the restitution coefficient. Most of the proposed KTGF models have 
been incorporated into CFD models for numerical simulations of hydrodynamics ingas–
solid systems and solid–liquid suspension systems. The obtained predictions 
quantitatively agreed with experimental data. 

Brucato et al. (1998) and Ranade’s group (Khopkar et al., 2006, Sar Deshpande et al., 
2010) evaluated the role of turbulent dispersion in predicting solid–liquid suspension 
quality. Feng et al. (2013) developed an explicit algebraic stress model (EASM) for 
simulating liquid–solid two-phase turbulent flow in stirred reactors. Hosseini et al. (2010) 
b developed a CFD model to investigate the solid–liquid mixing quality under different 
conditions. Montante et al. (2007) simulated the dilute solid re-suspension in a stirred 
reactor with multiple impellers. Tamburini et al. (2009) studied the dynamic evolution of 
solid–liquid suspensions by transient and steady-state simulations. 
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They developed an Eulerian-Eulerian multi-fluid model to predict suspend ability, 
critical agitation speed, and solid phase holdup. Blais et al. (2016) introduced a CFD-DEM 
coupled model to simulate viscous suspensions, consistent with experimental 
observations. They also investigated the influences of particle properties and mixer 
characteristics on viscous solid–liquid mixing. 

This study developed an effective Eulerian–Eulerian model that incorporated the 
KTGF to investigate the effects of particle–particle interactions on the quality of solid 
suspensions. The modified CFD-KTGF coupled model was applied to simulate the dense 
solid re-suspension and studied the influences of particle size and loading [6]. 

2.3 Modeling particle dispersion in wall-bounded turbulent flows 
Particle dispersion and deposition in a fully developed turbulent channel flow are 

investigated using direct numerical simulation (DNS). Results are compared with 
experimental measurements and numerical benchmark solutions. Two scenarios of fully 
elastic and no-rebound (trap-wall) collisions are considered. At lower Stokes numbers, the 
deposition velocity of the downward channel flow is higher than the upward flow. In 
comparison, at higher Stokes numbers, the upward flow has a higher deposition rate but 
a lower near-wall particle concentration. Understanding the physical mechanisms which 
affect particle motion in turbulent flow is essential for accurate predictions of turbulent 
quantities of particles. Inter-particle and particle-wall collisions have been shown to affect 
particle dispersion in wall-bounded turbulent flows significantly.  

The impacts of turbulence, inter-particle collisions, and particle walls were examined 
in this study. Using a computational model of fully formed, turbulent flows loaded with 
particles of different mass loading ratios, collisions on particle dispersion are examined. 
Using the Reynolds-averaged Navier–Stokes (RANS) equations and a low Reynolds 
number k–turbulence model, the conventional method is utilized for the carrier-fluid flow 
field solution and the stochastic separated to solve the dispersed-phase (i.e., particle) flow 
field, flow model is used [7]. 

2.4 Modeling particle deposition and dispersion 
A study investigated particle dispersion and deposition in a room using a novel hybrid 

RANS/LES turbulence model inside the Multi Relaxation Time (MRT) Lattice Boltzmann 
Method (LBM). For the hybrid RANS/LES technique, the LES model was used to evaluate 
the rest of the domain inside the confines of the LBM, while the RANS model was used to 
simulate the near-wall region. When RANS was used, the k - turbulence model was 
utilized in the near-wall layer. Particles with sizes ranging from 10 nm to 10 m were 
studied to replicate particle deposition and dispersion in space. Particle dispersion and 
deposition simulation results revealed that the present hybrid method’s predictions were 
comparable to prior LES-LBM predictions. In addition, compared to the k - model, the 
predictions of the hybrid model for particle deposition and dispersion were more in line 
with the outcomes of LES simulations. 

The Lattice Boltzmann Method (LBM) is a computational model simulating turbulent, 
multi-phase, and particulate suspensions. The Lattice Boltzmann Method (LBM) is a 
recent, efficient, and valuable computational technique that has drawn the interest of 
more researchers from many fields. LBM has been used to simulate single-phase flows, 
multi-phase flows, turbulent flows, particle flows in porous media, and multi-phase flow 
suspensions during the previous 20 years. The most popular technique for modeling 
interior air flows is the Reynolds-Averaged Navier-Stokes (RANS) equation in 
combination with a turbulence model [7]. 

2.5 Typical mixing behaviors of gas-solid-liquid flow in a rotary drum 
In engineering industries, especially chemical engineering, the solid-liquid rotary 

drum method has a significant role in liquid-solid materials, like mixing. These drums 
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involve complex multi-phase gas-solid-liquid flows, encompassing phenomena such as 
slipping, slumping, rolling, cascading, contracting, and centrifuging. The inner wall of the 
drum causes particles to lift through frictional forces, leading to the creation of a passive 
zone. As the particles reach a certain height, they slide down under the influence of 
gravitational force, forming an active zone. An optimal balance between mixing 
performance and energy costs is paramount in effective drum design and process 
optimization. Developing a knowledge and understanding of gas-solid-liquid flow and 
particle mixing characteristics within the rotary drum is essential to achieve this balance. 
This understanding will provide valuable insights into the dynamics and behavior of the 
system, enabling improved drum design and enhanced process efficiency. 

A study focused on the development of a coupled Computational Fluid Dynamics-
Discrete Element Method-Volume of Fluid (CFD-DEM-VOF) model to investigate the 
flow and mixing performance of the three phases (gas-solid-liquid) within a partially 
filled rotary drum. The primary objective is to analyze the effects of rotating speed on the 
system. The model is validated, and various aspects of the system are comprehensively 
observed. The study covers the transverse gas-liquid flow, voidage (fraction of volume 
occupied by gas or liquid), particle flow pattern (including active depth), particle velocity 
distribution, solid residence time, and particle mixing and dispersion. Higher rotating 
speeds lead to deeper active zones, enhanced mixing, and improved particle dispersion. 
Furthermore, liquid in the system contributes to a greater active depth, longer solid 
residence time in the active zone, and reduced contact force between particles [11]. 

2.6    Particle dispersion of solid-liquid characteristics 
In mineral processing, Solid-Liquid fluidized beds (SLFB) are often used in settling 

velocity and were applied in leaching, washing, and particle size classification. Solid-
Liquid fluidized beds (SLFB) express better phase segregation and mixing, which depend 
on particle diameter, difference of density, and slip velocity because of complex 
interactions between solid and liquid—a diffusion-like parameter known as the 
dispersion coefficient is frequently utilized to understand the hydrodynamics of SLFB.  

The degree of segregation is mainly determined by the particle size and density ratio, 
which decreases as the fluid’s surface velocity increases. This study uses the segregation 
and mixing behavior of SLFBs (Solid Liquid Fluidized Beds) and the dispersion coefficient 
to describe these properties. Due to limited particle interaction and mixing, the particle 
dispersion coefficient becomes negligible when the bed is entirely segregated. This causes 
a rise in the particle dispersion coefficient, indicating improved mixing inside the particle. 
The model for the dispersion coefficient is consistent in diffusion coefficient specification 
and integrates the mean free path of collision and the gap fluid velocity. For both mono 
and multi-particle systems, it optimizes the model using experimental data spanning a 
wide range of particle sizes (0.39 to 23 mm), liquid superficial velocities (0.0009 to 0.6 m/s), 
and Reynolds numbers (4 to 2820). This study uses a one-dimensional convective-
diffusive numerical model to simulate mixing and separation behavior in a binary SLFB 
system [12].  

Atmospheric dispersion modeling can also be used in risk assessment. In a study 
conducted by [13], the trajectory of ash fall is examined. In this paper, the particle shape 
is studied as an essential parameter in the particulate matter dispersion, as numerous 
literatures have only considered spherical particles. It was found that the shape of the 
particle impacts the trajectory of the particle, especially if the diameter of the particle is 
greater than 1 to 3 micrometers. Particles with a sphericity of 0.5 or less move 44% farther 
than spherical particles. This is because of the low velocity of sedimentation in particles 
that are smaller in size compared to vertical velocity in the atmosphere, which is 
turbulence and horizontal movement of the wind. This conclusion is supported by [14] 

Particles with a 0.1 to 100 micrometers diameter travel farther from the source. 
Moreover, the velocity of particles 100 micrometers in diameter is 5 magnitudes greater 
than particles with smaller diameters. Smaller particles fall slower and move up to 5 
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magnitudes farther than particles with bigger diameters. Thus, it was concluded that 
particle shape, sphericity, and density significantly impact the mass loading prediction of 
particle dispersion [14]. 

3. Research Gaps and Future Outlook 
Particle dispersion modeling has a lot of various applications. This includes following 

the trail of movement of particulate matter, which can be challenging since there are many 
factors to consider, such as the particle’s inertia, gravitational pull, and continuity effects. 
Tracking the particle movement would be more challenging if done in actual conditions. 
Currently, the standard methods to study the dispersion of particulate matter in turbulent 
flow are the eddy interaction model, Monte-Carlo method, and random walk models. The 
mentioned methods are beneficial in understanding the system behind inertia and the 
effect of crossing the direction of movement of particles. However, these methods often 
encounter convergence problems as numerous calculations in trajectory are a prerequisite. 
Furthermore, the eddy interaction model gives inaccurate results in modeling particle 
dispersion in turbulent regimes. This problem is also encountered in random walk 
methods such as Markovian [15]. 

Another application of atmospheric dispersion modeling is the analysis and 
assessment of risk [16] conducted a study on the liquefied natural gas dispersion once an 
explosion occurs, specifically, the effect of experimental parameters in the dispersion. The 
experimental parameters studied in this paper are temperature and flow regime. In this 
study, various computational fluid dynamics models were used to simulate the dispersion 
of the particles. The RSM-w turbulence model produced the most accurate projection of 
all the models used for turbulent regimes. However, the turbulence model SST k-w is the 
most steady and secure model. Aside from that, it also requires fewer equations to 
function, unlike the other models. In the other model, realizable k-e, a continuity error 
occurred. Thus, a new study development must be conducted to resolve the error. 
Furthermore, researchers must focus on designing numerical models that give accurate 
results while staying stable and requiring as simple and minimal calculations as possible. 

In the study conducted by Shengbin Di et al. [17]., the researchers put forth an 
innovative approach to tackle the challenges associated with modeling dynamic fluid-
solid interactions. They introduce an improved direct-forcing immersed boundary 
method that aims to enhance the numerical representation of particle dispersion in such 
systems. The accurate depiction of fluid-solid interactions is crucial for understanding the 
behavior and movement of particles in various applications, including environmental 
processes, industrial systems, and biological systems. Simulating fluid-solid interactions 
has traditionally been a complex task due to the inherent difficulties in accurately 
capturing the intricate dynamics. The direct-forcing immersed boundary method offers a 
promising solution by directly imposing the forces exerted by the fluid on the solid 
particles. This eliminates the need for explicit boundary conditions and allows a more 
accurate representation of the fluid’s interaction with particles. The proposed method 
improves upon existing approaches by refining the representation of fluid-solid 
interactions. It addresses the limitations and shortcomings of previous models, such as 
incomplete force coupling and numerical instabilities. By incorporating the improved 
direct-forcing immersed boundary method, the researchers aim to provide more accurate 
predictions of particle dispersion, including factors like particle trajectories, velocity 
profiles, and concentration distributions. The significance of this research lies in its 
potential applications in a wide range of fields. Understanding particle dispersion is 
crucial for assessing air and water pollution, studying the behavior of granular materials, 
analyzing fluidized bed reactors, and simulating the movement of biological particles, 
among other areas. Accurate modeling of fluid-solid interactions can lead to more reliable 
predictions and insights, which, in turn, can inform decision-making processes and enable 
better designs for systems and processes involving particle dispersion. 
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While the study by Shengbin Di et al. [17] presents a valuable advancement in 
modeling techniques for fluid-solid interactions, there are still avenues for further 
research. It is essential to evaluate the performance and robustness of the improved direct-
forcing immersed boundary method under different flow conditions, particle shapes, and 
sizes. Additionally, investigations into integrating additional physical phenomena, such 
as particle aggregation or breakup, could enhance the model’s accuracy. Further 
exploration and refinement of these modeling approaches will contribute to the continued 
advancement of our understanding of particle dispersion in fluid-solid systems. There is 
also a need for further evaluation and validation of the proposed improved direct-forcing 
immersed boundary method for simulating dynamic fluid-solid interactions. Although 
the study introduces an innovative approach to enhance the numerical representation of 
particle dispersion, it is essential to assess the method’s performance under various flow 
conditions, particle sizes, and shapes. Conducting thorough investigations and 
comparisons with experimental data or alternative modeling techniques would help 
validate the accuracy and reliability of the proposed method. Additionally, exploring the 
integration of additional physical phenomena, such as particle aggregation or breakup, 
would further expand the capabilities and applicability of the model. Addressing these 
research gaps would contribute to advancing and refining modeling techniques for fluid-
solid interactions, ultimately improving our understanding of particle dispersion in 
diverse scenarios. 

In the study by R. Huang [18], a particle-filter-based online method for degradation 
analysis is proposed, explicitly focusing on applying the exponential-dispersion process. 
The exponential-dispersion process is a versatile stochastic model encompassing various 
degradation processes, making it suitable for analyzing various systems and phenomena. 
The fundamental motivation behind the research is to address the challenges posed by 
continually updating degradation observations and the need for real-time analysis. 
Traditional offline methods may struggle to handle the continuous influx of new data and 
require storing and recalling historical observations, which can be computationally 
intensive and impractical for real-time decision-making. Hence, the study seeks to 
develop an online method to update parameter estimators and dynamically provide real-
time degradation analysis results. The proposed method leverages the particle filter 
technique, a powerful sequential Monte Carlo method, to perform online inference for 
degradation analysis. The particle filter method allows for iterative parameter estimation 
using each new observed data point only once, eliminating the need to store and access 
historical data. By iteratively updating the parameter estimators, the method can adapt to 
changing degradation patterns and provide up-to-date insights into the degradation 
process. The study focuses on the Tweedie exponential-dispersion model, a subclass of 
the exponential-dispersion process. The Tweedie model is known for its flexibility and 
ability to capture various degradation phenomena. The proposed online degradation 
analysis method offers a powerful and versatile tool for real-time monitoring and 
predicting degradation processes by integrating the Tweedie exponential-dispersion 
model with the particle filter method. The study conducted simulation studies to evaluate 
the effectiveness of the proposed method. These simulations demonstrate the method’s 
ability to accurately track and analyze degradation processes in real-time, even in the 
presence of evolving data. By comparing the results of the proposed method with those 
of traditional offline methods, the study showcases the advantages of online inference in 
terms of computational efficiency, real-time capability, and adaptability to changing 
degradation patterns. 

Raeini et al. [19] present a spatially resolved fluid-solid interaction model designed 
explicitly for dense granular packs and soft-sand materials. The research aims to address 
the limitations of existing models in accurately capturing the complex behavior of fluid-
solid interactions in these types of materials. The research highlights the importance of 
understanding and accurately representing the behavior of granular packs and soft sand 
in various engineering and geotechnical applications. The authors emphasize that 
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traditional continuum-based approaches often fail to capture the intricate details of fluid-
solid interactions, leading to inaccurate predictions and limiting the applicability of the 
models. To overcome these limitations, the study proposes a spatially resolved model that 
considers the individual particles and their interactions within the granular pack or soft-
sand system. The model incorporates discrete particle dynamics and explicitly accounts 
for the fluid flow through the void spaces between the particles. Employing advanced 
numerical techniques, such as the discrete element method (DEM) and computational 
fluid dynamics (CFD), the model accurately captures the behavior of individual particles 
and their interaction with the surrounding fluid. This enables a more realistic 
representation of fluid-solid interactions in dense granular packs and soft-sand materials. 
The proposed spatially resolved model offers a more comprehensive and detailed 
understanding of fluid-solid interactions in these materials, allowing for improved 
predictions and insights into their behavior. The research contributes to the field by 
addressing the gap in accurately modeling fluid-solid interactions in dense granular packs 
and soft sand materials. This study presents a spatially resolved fluid-solid interaction 
model for dense granular packs and soft-sand materials. By incorporating discrete particle 
dynamics and considering the individual behavior of particles within the system, the 
model provides a more realistic representation of fluid-solid interactions. This research 
contributes to the advancement of modeling techniques for accurately capturing the 
complex behavior of granular materials. It expands our understanding of fluid-solid 
interactions in engineering and geotechnical applications. 

The article by X. Mei et al. [20] focuses on developing a high-order Markov chain model 
to predict the dispersion of particles in indoor environments with varying ventilation 
modes. The researchers aim to address the challenge of understanding and predicting the 
movement of particles in indoor spaces, which is crucial for assessing indoor air quality 
and designing effective ventilation strategies. They propose using a high-order Markov 
chain model that considers the historical states of the ventilation system to predict future 
particle dispersion. The study considers different ventilation modes, including natural, 
mechanical, and combination. By analyzing the data obtained from real-world 
experiments, the researchers constructed a high-order Markov chain model that captures 
the complex dynamics of particle dispersion under these ventilation modes. The model 
accounts for factors such as the concentration and size distribution of particles, as well as 
the characteristics of the ventilation system. Incorporating these variables, the researchers 
aim to provide a more accurate prediction of indoor particle dispersion compared to 
existing models. The study results show that the high-order Markov chain model 
effectively predicts particle dispersion under dynamic ventilation modes. The model’s 
accuracy is evaluated through comparison with experimental data, demonstrating 
promising performance in capturing the complex dynamics of indoor particle movement. 
Overall, the research contributes to indoor air quality assessment by providing a 
predictive model that can assist in designing efficient ventilation strategies and improving 
indoor environmental conditions. The study may not have fully accounted for the 
variability and complexity of real-world indoor environments and ventilation systems. 
Indoor environments can vary significantly in layout, furniture arrangement, occupancy 
patterns, and building materials, which can impact particle dispersion. Additionally, 
ventilation systems can have distinctive designs, operation modes, and control strategies. 
Future research could address these factors to improve the applicability and 
generalizability of the high-order Markov chain model. The validation of the high-order 
Markov chain model may have been limited. While the study mentioned the comparison 
of model predictions with experimental data, the extent and diversity of the validation 
may not have been comprehensive. It is essential to validate the model against various 
experimental setups, including indoor environments, ventilation configurations, and 
particle sources. This would help assess the model’s performance under various 
conditions and provide more confidence in its predictive capabilities. 
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Another article by A. Nanni et al. compares Puff and Lagrangian particle dispersion 
models at a complex coastal site. The researchers aim to evaluate and compare the 
performance of two diverse models used for simulating the dispersion of particles in the 
atmosphere. Specifically, they examine the puff model and the Lagrangian particle 
dispersion model. The study site chosen for this comparison is a complex coastal area, 
which poses unique challenges for dispersion modeling due to the influence of variable 
wind patterns, complex terrain, and other coastal factors. The study discusses the 
methodology employed to evaluate the models and compares their performance based on 
various metrics. The researchers consider factors such as model accuracy, computational 
efficiency, and the ability to capture the complex dispersion patterns at the coastal site. 
Comparing the results obtained from both models, the study provides insights into the 
strengths and limitations of each approach. The research findings contribute to our 
understanding of how well the Puff and Lagrangian particle dispersion models perform 
in complex coastal environments and provide guidance for choosing the most suitable 
model for similar locations. The study compares the performance of the Puff and 
Lagrangian particle dispersion models at a complex coastal site. The study evaluates 
model accuracy and computational efficiency, providing insights into the strengths and 
limitations of each model type in capturing the complex dispersion patterns in coastal 
environments. Based on the general context of particle dispersion modeling, there is 
limited consideration of model uncertainties: The study may not have extensively 
addressed the uncertainties associated with the Puff and Lagrangian particle dispersion 
models. These models rely on various assumptions and simplifications, which can 
introduce uncertainties in their predictions. Evaluating and quantifying the uncertainties 
associated with the models’ outputs would provide a more comprehensive understanding 
of their reliability and help assess their applicability in complex coastal environments [21]. 
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