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 Abstract: Sustainable polymers derived from biomass have the potential to reduce environmental 15 

impact while offering significant performance and cost advantages over petrochemical-derived 16 

macromolecules. We present here a facile and efficient approach to the synthesis of a biomethacrylic 17 

monomer: isobornyl/bornyl methacrylate (IBOMA/BOMA) using the naturally available camphor 18 

terpene in the essential oil of the Algerian plant Artemisia arborescens (Absinthe) as a key interme- 19 

diate. The essential oil of the aerial part of the Artemisia arborescens plant naturally distributed in 20 

northwest Algeria was isolated by hydrodistillation and analyzed using gas chromatography-mass 21 

spectrometry (GC/MS) techniques. Nine components were identified representing 90.7% of the total 22 

content. The main constituent of Artemisia arborescens essential oil is camphor (71.8%). Camphor 23 

was purified and modified to produce an 80% renewable carbon-based methacrylic monomer. This 24 

terpene-derived methacrylic monomer was free-radically polymerized to create a biosourced meth- 25 

acrylic polymer. Nuclear magnetic resonance (NMR) was used to characterize the structure of cam- 26 

phor terpene, isobornyl/bornyl methacrylate and poly (isobornyl/bornyl methacrylate) (PI- 27 

BOMA)/(PBOMA). 28 
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 30 

1. Introduction 31 

In the contemporary landscape, a substantial portion of essential materials is cur- 32 

rently derived from fossil fuels, yet a consensus among various research endeavors sug- 33 

gests a bleak prognosis: the depletion of all fossil resources within the next century. Con- 34 

sequently, an urgent call to action revolves around the transformation of chemical syn- 35 

thesis by adopting renewable resources, an ambitious quest vital for advancing sustaina- 36 

ble development and, more specifically, the production of monomers [1-9]. 37 

The realm of renewable polymers has witnessed a transformative influence through 38 

the advent of natural molecular biomass. This biomass, akin to its petroleum-derived 39 

monomer counterparts, exhibits the versatility to serve as a direct source, whether in the 40 

form of terpenes or carbohydrates, or to undergo derivatization, ultimately evolving into 41 

a monomer suitable for uncontrolled or controlled polymerization processes [8]. Biomass- 42 

derived monomers can be broadly categorized into four principal classes, contingent upon 43 

the origin of their natural resources: Oxygen-rich monomers include carboxylic acids (lac- 44 

tic, succinic, itaconic, and levulinic acids) and furans. Hydrocarbon-rich monomers 45 
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encompass vegetable oils, terpenes, terpenoids, fatty acids, and bietic acids. Bio-olefins 1 

represent yet another group of hydrocarbon monomers, while carbon dioxide diverges as 2 

a non-hydrocarbon monomer. The development of novel bio-based methacrylic mono- 3 

mers and polymers from terpenes has garnered significant attention in recent years [10]. 4 

Terpenes, a family of naturally occurring, hydrocarbon-rich molecules prevalent in essen- 5 

tial oils [11,12], exhibit a diverse array of structures. Terpenes featuring an isoprene moi- 6 

ety can be facilely polymerized through radical polymerization reactions [8,13]. Addition- 7 

ally, cyclic terpenes boasting alcohol or ketone functionalities can be strategically tailored 8 

for the pursuit of bio-sourced polymers [14,15]. 9 

This study is a focal point for the synthesis of a bio-based methacrylic monomer, with 10 

camphor terpene serving as a pivotal intermediate. The process involves the extraction of 11 

camphor from the Artemisia arborescens plant, followed by purification and modification 12 

to generate the bio-sourced methacrylic monomer. Subsequently, this monomer is sub- 13 

jected to free-radical polymerization, culminating in the creation of a bio-sourced thermo- 14 

plastic methacrylic polymer, as exemplified in Scheme 1. 15 

 16 

Scheme 1. Diagram summarizes the stages of our work. 17 

2.2. . Experimental 18 

2.1. Artemisia arborescens oil extraction 19 

The aerial part of the A. arborescens plant was collected in Tlemcen, western Algeria. 20 

The station's relative GPS coordinates are 1°44′52″W longitude, 35°00′48″N latitude and 21 

355 m above sea level. The essential oil of aerial part of Artemisia arborescens was ob- 22 

tained by hydro distillation for 3h employing Clevenger-type apparatus. 23 

2.2. Reduction of camphor 24 

     Camphor was reduced to isoborneol/borneol in the presence of NaBH4 in MeOH 25 

(figure 1). Camphor (0.01 mol) and methanol (3 mol) are introduced into a flask and stirred 26 

until a homogeneous solution is obtained. Next, 0.2g of sodium tetrahydruroborate 27 

(NaBH4) was added. The mixture was heated to 60° C for 1h. The mixture was then re- 28 

moved and cooled. Finally, 20 ml of ice-cold water was added to the mixture and filtered. 29 

2.3. Esterification of isoborneol  30 

      Into a 50 ml flask, 25 ml of dichloromethane were introduced. 1.5g of isobor- 31 

neol/ borneol, then add 0.7ml of triethylamine. The mixture is stirred in an ice bath. Next, 32 

0.9 ml methacryloyl chloride was added dropwise. After complete addition, the mixture 33 

was brought to room temperature and stirred for 24 hours. The product was washed with 34 

water (3x70 ml) and dried over anhydrous MgSO4. Product purification was carried out 35 

on a silica gel chromatography column using a mixture of heptane and ether (90/10). For 36 

1g of product, 30g of silica gel was used (figure 1). 37 
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2.4.  Polymerization of Isobornyl methacrylate 1 

      We decided to work with the mixture (isobornyl/bornyl methacrylate) without 2 

separation. In a 25 ml flask, 0.01 mol of monomer (isobornyl/bornyl methacrylate) was 3 

introduced, then 9x10-4 g of AIBN was added. The mixture was bubbled with nitrogen for 4 

15 min. Then stirred at 80°C for 6 h. The resulting polymer was purified by precipitation 5 

in methanol, filtered and dried in an oven at 60°C (figure 1). 6 

 7 

Figure 1. Reduction of camphor, Esterification of isoborneol/borneol and Polymerization of 8 
Isobornyl/bornyl methacrylate. 9 

3.3. . Results and Discussion 10 

     GC/MS analysis of A. arborescens essential oil shows that the oil is dominated 11 

by camphor (71.8%) (Table 1). 12 

Table 1. Chemical composition of essential oil of A. arborescens determined by GC/MS analysis. 13 

N° Compounds a RIa
b RIa

c % 

1 α-Thujene 913 914 3.6 

2 Camphene 946 944 2.1 

3 Artemisiatriene 922 924 2.5 

4 α-Terpineol 1185 1183 1.0 

5 β-Pinene 979 978 2.2 

6 Terpinen-4-ol 1171 1169 1.7 

7 Camphor 1143 1048 71.8 

8 Sabinene 952 954 0.8 

9 Chamazulene 1735 1734 4.8 

a Order of elution are given on the apolar column (HP-5MS). 14 
b Retention indices of literature (RIa) on the apolar column reported from the literature. 15 
eRI: Retention Indices. 16 
MS: Mass Spectrometry in electronic impact mode. 17 

the structure of each synthesized compound was analyzed by NMR, and the polymer 18 

was analyzed by NMR and Raman. the band at 625 cm-1 attributed to C-C-C in planar 19 

bending (ring), 875 cm-1 for CH2 rocking, 1470cm-1 for CH deformation, 1720 cm-1 and 2950 20 

cm-1 for C=O and CH2 stretching respectively[16] (figure 2). 21 
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Figure 2. NMR spectra of Isobornyl/bornyl methacrylate IBOMA/BOMA (A) Poly (isobornyl/bornyl 3 
methacrylate) PIBOMA/PBOMA (B) and (C) Raman Spectra of Poly (isobornyl/bornyl methacrylate) 4 
PIBOMA/PBOMA. [16]. 5 

4. Conclusion  6 

In conclusion, this work elucidates the synthesis of poly(isobornyl/bornyl methacry- 7 

late) by leveraging the camphor terpene, naturally occurring in the essential oil extracted 8 

from Artemisia arborescens, as a fundamental intermediate. The essential oil analysis con- 9 

ducted through Gas Chromatography/Mass Spectrometry (GC/MS) demonstrated a sig- 10 

nificantly high concentration of camphor terpene in the Artemisia arborescens plant ex- 11 

tract. This finding underscores the potential of utilizing this natural resource as a crucial 12 

building block for synthesizing advanced materials. 13 

The chemical modification of the camphor terpene offers a promising pathway for 14 

the development of a biopolymer characterized by an impressive 80 percent biobased car- 15 

bon content. This innovative approach capitalizes on the renewable nature of terpenes, 16 

paving the way for the sustainable production of high-performance materials. 17 

Throughout this study, each step involved in the separation of camphor and subse- 18 

quent modifications leading to the formation of the biopolymer was meticulously exe- 19 

cuted, resulting in successful outcomes. This accomplishment signifies a significant ad- 20 

vancement in the realm of biopolymer synthesis, showcasing the feasibility and efficacy 21 

of utilizing natural terpenes as precursors for eco-friendly material production. 22 

The utilization of natural compounds, such as camphor terpene from Artemisia ar- 23 

borescens, not only presents an opportunity for reducing reliance on non-renewable re- 24 

sources but also contributes to the development of environmentally friendly materials.  25 

The successful completion of this synthesis process highlights the potential of bio-based 26 

polymers derived from natural sources, emphasizing the importance of sustainable meth- 27 

odologies in material science and engineering. 28 

 29 
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