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Abstract: Coastal areas gather increasing hazard, exposure and vulnerability in the context of an-

thropocenic changes. The understanding of their spatial responses to acute and chronic drivers re-

quire ultra high spatial resolution that can only be achieved by UAV-based sensors. UAV lasergram-

metry constitues, to date, the best observation of the xyz variables in terms of resolution, precision 

and accuracy, allowing coastal areas to be reliably mapped. However, the use of lidar reflectivity 

(or intensity) remains poorly examined for mapping purposes. The added value of the lidar-derived 

near-infrared (NIR) was estimated by comparing the classification results of nine coastal habitats 

based on the blue-green-red (BGR) passive and BGR-NIR passive-active datasets. A gain of 4.14% 

were found out at the landscape level, while habitat-scaled improvements were highlighted for the 

“salt marsh” and “soil” habitats (4 and 4.56% for producer’s accuracy, PA, and user’s accuracy, UA; 

and 8.95 and 9.48% for PA and UA, respectively). 
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1. Introduction 

Coastal areas play a key role in the adaptation of ocean-climate change due to their 

land-sea interface [1]. The mapping and monitoring of their use and cover are crucial to 

understand where are located the most exposed and vulnerable zones and how to manage 

them in a sustainable way [2]. The finest spatial resolution possible is required to em-

power the diagnosis and prognosis of coastal objects subject to current and future erosion 

and/or submersion risks. To date, unmanned aerial vehicles (UAVs) consist of the best 

platforms to bear sensors capable to provide centimeter-scale 2D and 3D coastal infor-

mation [3]. The active lidar instrument scans coastal landscapes with a rate of hundreds 

of thousands points per second propagating at the speed of light [4]. UAV-based lidar 

products enable to reach the best accuracy and precision in xyz data among the air-

borne/spaceborne tools. However lidar intensity remains poorly harnessed in Earth Ob-

servation from satellite to drone, despite its obvious added value in terms of spectral in-

formation [5]. 

This study aims to assess the contribution of the UAV-based lidar-derived near-in-

frared (NIR) intensity in the overall accuracy (OA) and kappa coefficient (κ) of the classi-

fication of a coastal landscape, provided with nine representative natural, semi-natural 
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and anthropogenic habitats. The lidar NIR contribution is quantified in the light of a blue-

green-red (BGR) passive imagery, whose camera is co-located with the lidar sensor.   

2. Methodology 

2.1. Study Site 

The study site is located along the bay of Mont-Saint-Michel, midway between the 

most extended salt marshes in northern France and rural polders (Figure 1). 

 

Figure 1. Blue-green-red composite imagery of the study site and its global location (11 385 × 5 538 

pixels; 0.01 m pixel size; 23 626 927 points). 

This site was selected based on the diversity of the habitats, namely salt marsh, grass, 

dry grass, shrub, tree, soil, sediment, road, and car (Table 1). Every class was represented 

by 4 600 pixels, split into 2 300 calibration and 2 300 validation pixels. Both sub-datasets 

were spatially disjointed to avoid spatial autocorrelation. A total of 41 400 pixels were 

therefore used for, first, training the probabilistic maximum likelihood learner, then for 

testing its predictability.  
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Table 1. Habitat name, description and blue-green-red derived thumbnails. 

Habitat Name Habitat Description Habitat Thumbnail 

Salt marsh 
High salt marsh herbaceous 

stratum 
 

Grass 
Terrestrial herbaceous stra-

tum 
 

Dry grass 
Dried terrestrial herbaceous 

stratum  

Shrub Terrestrial arbustive stratum 
 

Tree 
Terrestrial arborescent stra-

tum  

Soil 
Mixed organic/mineral bare 

ground  

Sediment Mineral bare ground 
 

Road 
Tar anthropogenic infrastruc-

ture  

Car Anthropogenic vehicle 
 

2.2. Drone Lidar Flight 

The lidar drone mission was realized on 5 June 2023 using a DJI Zenmuse L1 sensor 

mounted on a DJI Matrice 300 RTK quadcopter, linked with a DJI D-RTK2 high precision 

Global Navigation Satellite System (GNSS) station base. The flight mission followed these 

navigational parameters: 50 m height, 4 m/s speed, 12 min time, 2.04 km path length, 0.30 

km2, 233 BGR pictures, 0.013 m ground sample distance. 

The Zenmuse L1 sensor is designed with a 905-nm Livox Avia laser, a 200-Hz inertial 

measurement unit and a 1-inch RGB camera (20 Mp), all mounted on a 3-axis gimbal pro-

vided with a DJI Skyport, enabling the synchronization of the lidar RTK positioning with 

the Matrice 300 RTK system. The point sampling rate was fixed at 240 kHz in the dual 

return mode, and the line scanning pattern was selected (repetitive field-of-view : 70.4° 

horizontal × 4.5° vertical). The lidar mission followed these specific parameters: 80% front 

overlapping, 70% side overlapping, average density point of 2 477 points/m2. The DJI na-

tive (but proprietary) lidar format was implemented into DJI Terra to get the .las format 

in the local datum RGF93, projected in Lambert 93, along the IGN69 altimetry. The mean 

NIR intensity was rasterized at 0.01 m from the resulting point cloud (Figure 2). 
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Figure 2. Infrared lidar-derived near-infrared imagery of the study site (11 385 × 5 538 pixels; 0.01 

m pixel size; 23 626 927 points). 

3. Results and Discussion 

3.1. Landscape Scale 

The OA and κ were derived from the confusion matrices established from the vali-

dation datasets of the BGR (Table 2) and BGR-NIR (Table 3) classifications. OA and κ 

reached 84.57% and 0.8264 for the BGR, and 88.71% and 0.8730 for the BGR-NIR datasets, 

respectively (Figure 3). 

Table 2. Confusion matrix derived from the blue-green-red classification. 

 Salt Marsh Grass Dry Grass Shrub Tree Soil Sediment Road Car 

Salt marsh 1955 0 0 0 0 0 0 0 0 

Grass 0 2298 0 0 0 0 0 0 0 

Dry grass 334 2 1966 157 368 0 42 0 0 

Shrub 0 0 240 2143 0 0 0 0 793 

Tree 0 0 88 0 1932 0 0 0 0 

Soil 0 0 0 0 0 2176 2 133 0 

Sediment 0 0 3 0 0 78 2138 776 0 

Road 0 0 3 0 0 46 118 1391 0 

Car 11 0 0 0 0 0 0 0 1507 

Table 3. Confusion matrix derived from the blue-green-red + lidar-derived near-infrared classifica-

tion. 

 Salt Marsh Grass Dry Grass Shrub Tree Soil Sediment Road Car 

Salt marsh 2250 0 0 0 0 0 0 0 14 

Grass 0 2298 0 0 0 0 0 0 0 

Dry grass 39 2 1920 145 108 2 54  779 

Shrub 0 0 236 2155 0 0 0 0 0 

Tree 0 0 141 0 2192 0 0 0 0 

Soil 0 0 0 0 0 2214 2 78 0 

Sediment 0 0 3 0 0 78 2230 625 0 

Road 0 0 0 0 0 6 14 1597 0 

Car 11 0 0 0 0 0 0 0 1507 
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Figure 3. Classification of the nine classes in the coastal landscape based on (a) blue-green-red im-

agery; and (b) lidar-derived near-infrared + blue-green-red imageries (11 385 × 5 538 pixels, 0.01 m 

pixel size). 

3.1. Habitat Scale 

Regarding the producer’s accuracy (PA), the habitats that most benefited from the 

NIR addition were “road”, “grass” and “soil”, whereas “tree” lost a little detection. 

About the user’s accuracy (UA), “soil”, “tree”, and “salt marsh” gained in discrimi-

nation, whereas “road” and “grass” were less classified (Table 4).  

The consistent augmentation for “salt marsh” and “soil” might be explained by the 

higher and lower reflectance in the NIR spectrum, respectively. High salt marsh vegeta-

tion, such as Puccinellia, Festuca, Aster, Limione or Elymus genera, displays a tangible higher 

NIR reflectance in the summer season [6], while the “soil” investigated here corresponded 

to the transitional wet-to-dry area just above a pond, thus the lower NIR reflectance due 

to the moisture.  
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Table 4. Results of the Producer’s Accuracy and User’s Accuracy differences between BGR and 

BGR-NIR classifications. 

Habitat Name Producer’s Accuracy User’s Accuracy 

Salt marsh 4 4.56 

Grass 11.3 -1.68 

Dry grass 1.65 2.35 

Shrub 0.53 0.2 

Tree -2 9.28 

Soil 8.95 9.48 

Sediment 0 0 

Road 12.83 -0.62 

Car 0 0 

4. Conclusions 

The contribution of the UAV-borne lidar-derived NIR intensity to the classification 

of a coastal landscape (provided with nine representative habitats) was evaluated by com-

paring OA, PA and UA results associated with a passive BGR dataset and a combination 

of a passive-active BGR-NIR dataset using a probabilistic maximum likelihood classifier. 

At the landscape level, the addition of the lidar NIR intensity to the BGR reference in-

creased OA by 4.14%. At the habitat level, “salt marsh” and “soil” gained 4 and 8.95% in 

PA, respectively, and 4.56 and 9.48% in UA, respectively. It is therefore recommended to 

add the lidar-derived intensity into classification when front and side overlaps at least 

reach 80 and 70%, respectively. 
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