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Abstract: Precision agriculture has seen significant advancements with the integration of remote 

sensing technologies. However, challenges such as real-time data availability, and computing limi-

tations persist. This study aimed to develop a standardized method for generating spatial variability 

maps for vineyard management using UAV (Unmanned Aerial Vehicle) imagery. Using IDW (In-

verse Distance Weight), nadir images with geotagged locations were processed to extract spectral 

information. The results were analyzed using NGRDI (Normalized Green-Red Difference Index) 

and demonstrated that geo-interpolation methods are effective compared to traditional photogram-

metry-based methods, but 90% faster, highlighting their potential in real-time applications and edge 

computing. In addition, IDW correlation with Sentinel 2 imagery reached values as high as r = 0.8. 

This method offers a faster, less resource-intensive alternative to existing techniques for crop map-

ping, addressing the current challenges in precision agriculture.  
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1. Introduction 

Precision agriculture (PA) leverages technology and data to enhance crop production 

while minimizing environmental impact. By collecting and analyzing data from satellites, 

Unmanned Aerial Vehicles (UAVs), field sensors, and soil samples, PA identifies field 

variability for site-specific management [1]. This allows for efficient input application, im-

proving yields and reducing waste [2]. On the other hand, Site-Specific Crop Management 

(SSM) focuses on understanding how spatial variability impacts crop development [3], 

and remote sensing, especially with the innovation in agriculture, aids in tasks related to 

SSM, like disease detection [4] and crop variability management [5]. 

Conversely, satellites, paired with GIS, have been used for remote sensing since the 

70s [6], with Vegetation Indices (VIs) being a key tool to analyze spatial variability in ag-

riculture [7–11]. In this aspect, affordable UAVs have become pivotal, providing high-

resolution imagery for several key applications [12,13]. Yet, often, moderate-resolution 

images suffice for mapping crop variability [14,15], as variability is frequently closely re-

lated to large-scale factors [16]. Therefore, the choice of the data source depends on the 

study's requirements. 

Low-resolution images might not reveal intra-field variability in homogeneous veg-

etation, but different resolutions can yield similar results in heterogeneous fields. In this 

way, several studies have found correlations between satellite and UAV images, suggest-

ing both can assess field conditions effectively [17–19]. In addition, in agriculture, timely 

information is crucial for optimal decision-making. While photogrammetric techniques 
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offer detailed insights, they can be costly and time-consuming. Moreover, rural environ-

ments often face challenges like limited computing capacity and connectivity [20]. 

Hence, in agricultural settings, the challenge lies in acquiring fast, costly effective and 

reliable remote-sensing products, often in limited environments. On the other hand, spa-

tial interpolation methods have been recognized as fast and effective tools for analyzing 

spatial variability in natural settings. Among such techniques, IDW (Inverse Distance 

Weight) holds a distinct position, being one of the most prevalent methods in geostatistics 

and spatial interpolation for natural landscapes [21–24]. While there have been instances 

of combining UAVs with geostatistical techniques such as IDW, their primary application 

was for validation, not for the generation of spatial variability maps [25]. In light of the 

above, there is a gap in the literature of methods, that can provide rapid, cost-effective, 

and reliable remote-sensing products, especially in constrained environments, such as the 

countryside.  

This study seeks to introduce a novel approach to UAV precision agriculture to gen-

erate spatial variability maps using Vegetation Indices and IDW interpolation, focusing 

on crafting standardized workflows to facilitate swift evaluations of crop differences. Spe-

cifically, this work addresses challenges related to (i) rapid processing of UAV data for 

real-time insights, and (ii) the exploration of alternative techniques to conventional pho-

togrammetric methods and those relying on pre-trained models. 

2. Materials and Methods 

In 2022, the experiments were conducted in a vineyard located in “Tomiño, Ponteve-

dra”, Galicia, Spain. This vineyard, Vitis vinifera cv. Loureiro, is owned by 'Bodegas Terras 

Gauda, S.A.' and spans 1.06ha within the “Rias Baixas DO” (Designation of Origin). The 

grapevines, planted in 1990, have a NE-SW orientation with 2.5 meters between plants 

and 3 meters between rows. They were trained using vertical shoot positioning (VSP) and 

grafted onto 196.17C rootstock, suitable for humid soils. The vineyard adheres to the DO 

protocol and legislation. For aerial imagery, a DJI Phantom 4 RTK drone was used, cap-

turing high-resolution nadir images for mapping and surveying. The flight over the vine-

yard was conducted on 12 July 2022, at 30 m height, resulting in 282 RGB images. The 

drone's camera, equipped with a mechanical shutter, captures 20-megapixel images in 

JPEG format, with a 4:3 or 3:2 aspect ratio. 

The main innovative approach of this methodology is the paralell processing of UAV 

images and metadata, extracting both spectral and spatial data, to create a spatial varia-

bility map based on Vegetation Indices using geostatistics. To this end (Figure 1), a Region 

of Interest (ROI) is cropped from the center of each image, from which the Normalized 

Green Red Difference Index (NGRDI) is calculated. NGRDI serves as an exemplary VI in 

this case, but other indices could also be computed, provided the necessary bands are 

accessible. The spatial information is obtained from the image metadata, and a discretiza-

tion process combines this with the spectral data. The Inverse Distance Weighted (IDW) 

interpolation method is then applied to create the spatial variability map. This method 

assumes that closer points are more similar, and it uses the values of nearby measured 

locations to estimate values at specific locations. 

To validate the generated maps, high-quality orthomosaics are produced using a 

standard photogrammetric workflow in Agisoft Metashape Professional software. These 

orthomosaics are then compared to the maps generated by the proposed method. For a 

detailed comparison, three grid layers with varying tile sizes (1m, 3m, and 10m) are em-

ployed, representing sub-plant, plant, and plant-group levels respectively. The aim is to 

analyze differences in spatial variability between the products at different scales. Addi-

tionally, the products were compared with freely available satellite images (Sentinel 2) 

from the same or closely matched dates. The processing is conducted on a high-perfor-

mance Linux system, and Spearman correlation analysis is used to assess the correlations 

between the datasets. 
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Figure 1. Workflow showcasing the product generation. Starting with nadir images from the UAV 

flight, the Vegetation Index is determined and discretized based on coordinates from the metadata 

of each image. This results in a spatial interpolation to produce the spatial variability map. 

3. Results and Discussion 

The maps generated using the IDW interpolation method showed patterns consistent 

with those of orthomosaic-based maps. In the IDW map, an area in the west displayed 

higher VI values, possibly influenced by shade from a tree. Another notable feature was 

a strip running from west to northeast, which was also faintly visible in the NGRDI de-

rived from the orthomosaic. 

The results of the Spearman correlation analysis indicated strong correlations be-

tween the datasets, achieving a correlation up to r = 0.93 for the 10m tile size (Table 1). The 

study found that, as expected, as the grid size used for analyzing spatial variability in-

creased, the correlation between the generated variability maps and the vegetation maps 

produced by the orthomosaic also increased. 
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Table 1. Spearman correlation for 1m, 3m and 10m tile size between the NGRDI (Normalized Green 

Red Difference Index) values of the orthomosaic and the values of IDW (Inverse Distance Weight). 

All values had a p-value < 0.001. 

Tile Size 

1m 3m 10m 

0.52 0.71 0.93 

Furthermore, the results were compared with Sentinel-2 satellite images, finding that 

the correlation between the satellite images, the products generated by the proposed 

method and the products generated by photogrammetric techniques was very similar (r 

up to 0.66). 

The main advantage of the method proposed in this study is the speed, since it was 

notably faster than traditional photogrammetry-based methods (Figure 2). In this way, it 

consumed 90% less time, offering significant advantages in the agricultural sector. On the 

other hand, UAVs have become an essential tool for generating VIs in agriculture, like the 

NGRDI. This index has shown its utility in various agricultural contexts, such as evaluat-

ing nitrogen balance. Therefore, the proposed method, combined with other VIs, could 

potentially be useful for assessing other parameters and key variables. Additionally, the 

flexibility of the methodology, requiring only geotagged images, theoretically allows it to 

be integrated into more complex processes, potentially enhancing real-time agricultural 

operations and edge computing.  

 

Figure 2. Duration for each procedure (measured in seconds). The figure outlines the time needed 

for photogrammetry; and the proposed method, composed of discretization (converting images to 

points) and IDW (Inverse Distance Weight) interpolation. 

The generated spatial variability maps can be helpful for quick agricultural assess-

ments. For instance, in the vineyard, the IDW maps highlighted a belt, a known phenom-

enon in agriculture, which can be influenced by factors like terrain topography and 

ephemeral streams. Such maps can provide insights into spatial variability, even with a 

lower spatial resolution than the original images. Conversely, the northern part of the 

vineyard, being at a lower elevation, can influence sediment transport, affecting soil tex-

ture and composition, which in turn can impact plant development and vegetation 

amount.  

The study utilized a specific sensor type, yet the methodology could be adaptable to 

any geotagged image. This adaptability should not be a concern, given that the common 

sensors used in agriculture routinely produce geotagged images [26,27]. The flexibility of 

the methodology, combined with its speed and efficiency, makes it a promising tool for 

real-time agricultural assessments, potentially aiding in tasks such as irrigation leak de-

tection, soil parameter estimation, and vegetation monitoring.  

4. Conclusions 

The study introduced a method using geostatistical interpolation, specifically IDW, 

to create spatial variability maps from nadir images with geotagged locations. This ap-

proach, applied in images from vineyards, offers a faster and more energy-efficient 
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alternative to traditional photogrammetry techniques, achieving high correlations (up to 

r = 0.93) for spatial variability assessment. The versatility of the methodology allows for 

the use of any nadir image, ensuring accurate spatial information, crucial for Site-Specific 

Crop Management (SSM). Its efficiency, consuming more than 90% less time and power, 

makes it suitable for real-time evaluations, edge computing, and integration with satellite 

images, even in low-bandwidth scenarios. Future research could further refine this work-

flow, integrating variabilities such as other locations, other UAVs, and other sensors. 
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