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Abstract: In the study area, landslides represent the most frequent geological-geomorphological 

hazard in mountain environments, causing damage to infrastructure, local economies and loss of 

human lives. A landslide susceptibility map was developed, based on the sum of the weighted 

scores of the landslides conditioning factors. 21% of the study area is in high and very high suscep-

tibility zones to be affected by landslides. These areas are concentrated in the headwaters of basins, 

valley bottoms, steep slopes and in the main riverbeds and streams. 
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1. Introduction 

Landslide processes are defined as rapid or slow movements of rock, soil or both, of 

a gravitational nature [1], and are classified according to the type of material, movement, 

degree of soil saturation, among others; in rockfall, overturning, rotational or translational 

landslides, lateral spreading, creeping, debris flows and floods [1]. The occurrence of 

these phenomena is conditioned by factors such as lithology, geomorphology, structures, 

hydrology, hydrogeology, vegetation and climate; factors that trigger them include hy-

drometeorological, seismic and volcanic events [2]. 

In mountain environments, gravitational, snow, glacial, periglacial and fluvial pro-

cesses interact [3], where slope, relief and extreme precipitation events increase the inten-

sity of denudation and deposition processes [3]. Landslides are one of the most common 

phenomena of denudation or erosion of the topography in mountain environments, spe-

cifically, rotational or translational landslides, rock falls, debris flows and floods. 

The Andes mountain range is characterized by its geological, geomorphological, tec-

tonic and climatic conditions, in an area highly susceptible to the generation of different 

types of landslides [4]. Landslides are common in the Andean foothills and in the interior 

ravines of the basins, especially debris flows and floods that can reach the alluvial plains 

[5], which implies a risk for the population, increased by the sustained growth of cities 
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towards the foothills. This study contributes to the knowledge of areas susceptible to de-

bris flow in the upper Mapocho river basin (33°13' - 33°30'), which includes the northeast-

ern urban sector of the city of Santiago in the Andean foothills and the headwaters of the 

basin in the Andes mountain range, where tourism and mining activities are developed. 

2. Material and Methods 

2.1. Study Area 

The study area has an extension of 1,021 km2 and is located in the northeastern sector 

of the Metropolitan Region, in the upper Mapocho River basin, between coordinates 

33°06'S - 33°29'S and 70°36'W - 70°11'. It is composed of the sub-basins of the Mapocho 

River between Estero Arrayán and Estero de Las Rosas; Estero Arrayán; San Francisco 

River and Molina River, which are part of the northeastern sector of the Maipo River basin 

(Figure 1). 

The central zone of Chile is characterized by an interannual variability of precipita-

tion, with an annual average between 100 and 2000 mm [6], produced by cold fronts, 

mostly concentrated in winter [6], and within a Mediterranean climate [6]. 

Geologically, it is composed of a group of volcanic, volcanoclastic and continental 

sedimentary rocks corresponding to the Abanico Formation (Upper Eocene-Lower Mio-

cene) [7]. Through angular unconformity, overlies clastic, epliclastic and volcanic rocks of 

the Miocene volcanic arc, corresponding to the Farellones Formation (Lower Miocene - 

Upper Miocene) [7]. 

 

Figure 1. Location map of the study area. The main sub-basins and the rivers and creeks that com-

pose them are shown. 

2.2. Data Sources  

A bibliographic and cartographic review of the geomorphology, hydrography, geol-

ogy and land cover components was conducted. For the geomorphological, hydrographic 

and geological characterization, we used as a basis the photointerpretation of the Pléiades 

satellite image mosaic of 50 cm resolution (2015) and PlanetScope of 3 m resolution (2023); 

digital cartography of the Metropolitan Region, section E, scale 1:50,000; inventory of glac-

iers and water resources of the General Directorate of Water (2022); and DEM ALOS PAL-

SAR 12.5 m resolution (2011), downloaded from server https://www.asf.alaska.edu/sar-

data/palsar/. 
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The forestation information layers and the persistence of snow cover were obtained 

from the time series analysis of Landsat and MODIS satellite images (2000-2022). The for-

estation data were downloaded from the server https://glad.earthengine.app/view/global-

forest-change and snow cover persistence was elaborated and updated by [8]. Land uses 

were extracted from Castastro y Evaluacion de los Recursos Vegetacionales Nativos de 

Chile (2013) (Cadastre and Evaluation of Native Plant Resources of Chile) and down-

loaded from the server http://sit.conaf.cl/. 

2.3. Conditioning Factors 

A total of 14 conditioning factors were considered for the calculation of the Suscepti-

bility Index (SI), associated to three groups, used by [9], and described below. 

Slope gradient: The slope was calculated using the 12.5 m resolution DEM ALOS 

PALSAR, which was also used to calculate the slope orientation, profile curvature, topo-

graphic wetness index and drainage network hierarchy factors.  

Solpe orientation: The orientation of the slopes when exposed to the sun influences 

melting and humidity processes, generating effects on erosive processes and material 

weathering, in addition to reducing the presence of vegetation due to the dryness of the 

area [10]. 

Profile curvature: Concave slopes with active erosion are considered more suscepti-

ble, while convex slopes have a lower susceptibility index [11].  

Distance to geoforms: The geoforms correspond to linear elements of the surface and 

are related to higher degrees of fracturing, so neighboring zones are classified as having 

higher susceptibility [9]. 

Drainage network density: The number of drains in a surface unit of 1,000 m x 1,000 

m was considered. The higher the drainage density, the higher the susceptibility and the 

lower the drainage density, the lower the susceptibility.  

Distance drainage network by hierarchy: The drainage network conditions the per-

meability, saturation and filtration capacity of the soil, affecting the stability of the sub-

strate, eroding and saturating the lower parts of the slopes [12]. The distances were de-

fined according to the runoff and order of the drains. 

Topographic Wetness Index (TWI): This index reflects the tendency of water to accu-

mulate in areas of the basin [13]. An increase in this index is related to areas that are more 

prone to have landslide processes. 

Geological units: Lithological units were determined from literature and carto-

graphic review; and were reclassified based on the categories used by [14].  

Fault density: Faults identified on geologic charts and maps are related to the de-

crease in rock strength [15]. To determine the fault density, observed and inferred faults 

were considered in a 1,000 m x 1,000 m grid. 

Distance to faults: Areas close to faults are more prone to generate landslides than 

more distant areas [15]. Differentiated distances were considered for observed and in-

ferred faults, attributing greater importance to observed faults. 

Distance to folds: Similar to the criterion used for the distance to faults, the fold axis 

corresponds to a zone of increased weakness due to the development of associated frac-

tures [9]. Susceptibility indexes were assigned according to the increase in distance to the 

fold axis. 

Forest change: The map characterizing the extent and changes in forests during the 

period 2000-2022, developed by [16], was used, and categories of increase, stable and de-

forestation were established. 

Land cover: A simplification of land uses from the Catastro y Evaluación de los Re-

cursos Vegetacionales Nativos de Chile, a scale of 1:50,000 (2013) was used. 

Snow persistence Elaborated and updated by [8], the Snow Cover Index (SCI) was 

considered, representing the snow frequency over 23 years (2000-2022) and at a percent-

age scale of 0-100%. 

https://glad.earthengine.app/view/global-forest-change
https://glad.earthengine.app/view/global-forest-change
http://sit.conaf.cl/
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2.4. Susceptibility 

Susceptibility is associated with the probability of landslides in a specific area due to 

local environmental conditions [17]. It was evaluated using a qualitative combination 

methodology of thematic maps [4,6,10,14,18]. It was quantified by calculating a Suscepti-

bility Index (SI), which involves the sum of weighted scores for each one of the 14 condi-

tioning factors considered in the study area [4,10,14] (Equation 1). 

SI =  ∑  𝑓𝑖 ∗ 𝑚𝑎𝑝 𝑓𝑎𝑐𝑡𝑜𝑟𝑖  

14

𝑖=0

 (1) 

Where 𝑓𝑖  corresponds to each one of 14 conditioning factors reclassified in values be-

tween 0 and 5, where 0 indicates a factor that does not increase susceptibility and 5 indi-

cates a factor that strongly influences susceptibility; and 𝑚𝑎𝑝 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 corresponds to the 

percentage assigned to each of the conditioning factors according to their level of im-

portance and on a percentage scale of 0-100% (Table A1). 

The initial weights considered were modified based on the work done by [9], then 

the percentage assigned to each of the conditioning factors according to their level of im-

portance was determined using the Analytical Hierarchical Process (AHP), which consid-

ers a comparison of the contribution of the different factors in a pairwise matrix. To obtain 

the weights of the factors in the AHP, the methodology used by [19] was applied, where 

the construction of the pairwise comparison matrix implied that each factor was rated 

against each one of the other factors by assigning a relative dominant value between 1 and 

9 in the intersection cell, considering the preference scale developed by [20]. Finally, the 

values obtained from the AHP was converted to a percent, where the sum of the 14 con-

ditioning factor is 100%. 

Table A1. Conditioning factors used to determine susceptibility [9]. 

Group Subgroup Percent 

Geomorphology 

Topography 

54% Geoforms 

Drainage 

Geology 
Units 

34% 
Structures 

Soil condition 

Forestation 

12% Coverage 

Snow 

ArcGIS®  software was used to process the acquired data, create the new data, reclas-

sify the thematic maps, calculate and categorize the SI using the Raster Calculator tool and 

Natural Breaks [21], to group similar values and determine the optimal number of cate-

gories (Table 2). 

Table 2. Reclassification of the Susceptibility Index. 

Susceptibility Index Susceptibility 

< 1.64 Very Low 

1.64 – 1.94 Low 

1.94 – 2.32 Moderate 

2.32 – 2.75 High 

 > 3.86 Very High 

3. Results 

Based on 14 conditioning factors, a map of debris flow and flood susceptibility in the 

upper Mapocho river basin was generated, as shown in Table 3 and Figure 2. 
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Table 3. Area and percentage of susceptibility categories. 

Susceptibility  Area (km2) Percent 

Very Low 201.93 19.81% 

Low 358.14 35.14% 

Moderate 237.81 23.33% 

High 121.06 11.88% 

Very High 100.29 9.84% 

78.28% of the study area is located in areas of very low to moderate susceptibility to 

generate and be affected by flow and flood debris. The main zones with high and very 

high susceptibility to generate flow and flood debris, which correspond to 21.72% of the 

study area, are located mainly to the northeast of the basin headwaters, in the valley bot-

toms, on slopes with gradients greater than 20° and in geological units with a low degree 

of consolidation (alluvial, colluvial, fluvial and landslide deposits, glaciers, wetlands, 

lakes and sectors with mining activity). 

 

Figure 2. Debris flow and flood susceptibility map in the upper Mapocho river basin. 

4. Conclusions 

 During the last decades, the foothills and highlands of the Metropolitan Region have 

had several landslide events. The events have been triggered mainly by climatic anoma-

lies, torrential rains and, to a lesser extent, by earthquakes of varying intensity. 

In the study area, the zones with the greatest susceptibility to be affected by debris 

flow and flood are concentrated in the main riverbeds and streams. This is consistent with 

the main types of landslide deposits recognized in the area, most of which correspond to 

hydric flows (with various concentrations of debris and water), which means that their 

mobility is essentially conditioned by topography. 

A landslide susceptibility map, based on remote sensing data, digital mapping and 

GIS tools, is an effective tool for landslide monitoring, land use planning, generation of 

early warning systems and emergency plans to protect the population and infrastructure. 
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Appendix A 

Table A1. Weight and percentage of conditioning factors to determine susceptibility [9]. 
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