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Abstract: Hyperspectral Imaging is getting popular in land use land classification because of its 

ability to capture detailed information through higher spatial resolution and contagious spectral 

bands. Using the hyperspectral image from G-LiHT (Goddard’s LiDAR, Hyperspectral, and 

Thermal) Airborne Imager covering a study area in Tennessee, Knoxville, we compared the 

performance of Spectral Angle Mappers (SAM), Spectral Information Divergence (SID), and 

Support Vector Machine (SVM) for land use land cover classification. We used a confusion matrix 

for the accuracy assessment of the classifiers. Among the three classifiers, SVM showed the highest 

accuracy with 92.03%. Our results also show that some classes, such as water and forests, are 

consistently distinguishable across all classification methods, while others, such as built-up areas 

vary depending on the technique used. 

Keywords: supervised classification; hyperspectral image; land use; spatial resolution; classifiers 

 

1. Introduction 

The detailed mapping of land cover land use change has advanced in recent days 

with emerging satellite data based on multispectral or hyperspectral sensors. Since the 

1960s, remote sensing data has been used in land cover mapping. The detailed mapping 

assists in analyzing changes over time in various land use land cover classes and assessing 

risk at various scales [1]. This information plays a vital role in preserving ecologically 

sensitive areas and solving environmental issues. With the increasing urbanization and 

land degradation, the significance of land use classification has increased [2] 

 A wide range of multispectral images are mostly used in image classification. 

However, with the rapid advancement in technology, hyperspectral images are also being 

used in recent days. The hyperspectral images provide spectral data for each pixel in 

numerous contiguous spectral bands often covering a wide range of wavelengths [3] Also, 

these images have high spectral resolution making them able to capture detailed 

information about the spectral characteristics of the observed objects or surface.  

The development of reliable image classification depends on the performance of 

classification algorithms.  Specifically dealing with hyperspectral images, the high 

dimensionality and spectral mixing are the major challenges [4] which can significantly 

impact the accuracy of classification results. Additionally, an inadequate number of 

ground truth data, as well as potential redundancy in hyperspectral images, add 

complexity to the classification process [5]. Therefore, this study aims to investigate the 

robustness of classification algorithms in handling spectral unmixing and limited ground 

truth information. compare the various image classification algorithms of a hyperspectral 

image. 
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An image classification involves a process where each individual pixel within the 

image is categorized into discrete land use classes [6,7]. The most often used two methods 

of classification are supervised classification and unsupervised classification. In 

supervised classification, the analyst knows about the labels of classes or has the training 

data set [8] before implying the classification in the image.  

Hence this study aims to perform and compare supervised classifiers (SVM, SAM, 

and SID) for the land use land cover classification using hyperspectral image.  

 

2. Materials and Methods 

2.1. Data 

The hyperspectral image from the G-LiHT (Goddard's LiDAR, Hyperspectral, and 

Thermal) was used for this research.  This data has undergone processing to generate 

standardized data products, including 1-meter at-sensor reflectance hyperspectral 

imagery. The flight was conducted on May 7, 2015, in Stanton of Knoxville, Tennessee. 

The image was acquired as UTK_7May2015_Stanton and was downloaded from the 

NASA G-LiHT website (https://glihtdata.gsfc.nasa.gov/) with 119 spectral bands 

between 418 and 918 nm. The hyperspectral imaging spectrometer model was 

Hyperspec model 1002A-00451; Headwall Photonics [9].  

2.2. Data pre-processing, training, and testing dataset 

We preprocessed the hyperspectral image to reduce redundancy and noise. We used 

Minimum Noise Fraction (MNF) transformation, a widely-used technique that serves to 

de-correlate spectral bands and reduce noise, effectively isolating the signal from 

undesirable variations [10]. Following this transformation, an eigenvalue analysis is 

conducted to determine the importance of each MNF component. MNF components with 

higher eigenvalues are prioritized as they capture more detailed information about the 

land cover classes being analyzed. We subsetted the original image with 30 bands only 

reducing the band with low eigenvalues.  

We used the spectral library created through an in-field survey using a spectrometer 

as the ground truth data or training data set for image classification. We used a random 

sampling method to choose our samples in the field. A total of 60 samples of each land 

cover type (vegetation, grassland, built-up, bare soil, water) were recorded using a 

spectrometer. Then, 40 samples were chosen for the training dataset randomly. The 

remaining 20 samples were chosen for testing. 
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Figure 1. Spectral library of different landcover types. 

2.3. Image classification  

2.3.1. Spectral Angle Mappers (SAM) 

SAM is particularly valuable for identifying and characterizing materials or objects 

within a scene based on their spectral signatures. SAM operates on the principle that the 

similarity between two spectra can be quantified by measuring the angle between them 

in a high-dimensional space, where each dimension corresponds to a spectral band or 

wavelength. [11] For this classification method, we tried various values of maximum 

angle radians, and the best result was obtained when a value of 0.3 was used. 

 

2.3.2 Spectral Information Divergence (SID) 

SID is commonly used in hyperspectral image processing for tasks like anomaly 

detection, target detection, and classification. It helps identify areas or objects in an image 

that deviate significantly from the expected spectral distribution, which can be useful in 

image classification [11] For the SID algorithm, we used the maximum divergence 

threshold’s value of 0.5 to obtain the best result.  

 

2.3.3 Support Vector Machine (SVM) 

SVM is a supervised machine learning algorithm used for classification and is 

effective in high-dimensional images [12]. We used radial radial-based kernel function 

using a gamma value of 0.009 for SVM. 

2.4. Accuracy assessment  

The accuracy assessment is a crucial step in land use land cover classification for the 

validation of the classified image. We used a confusion matrix, which summarizes the 

class labels against the predicted labels to evaluate the performance of supervised 

classification algorithms. The total accuracy was calculated as:  

Overall accuracy = (Number of correctly classified pixels ÷ Total number of pixels) * 100 

3. Results 

3.1. Image Classification 
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SAM appears to give no data value surrounding the water bodies and built-up areas. 

SID is able to remove the no data value from the image. It can be seen that the forest and 

built-up areas are clearly classified. Although, there seems to be some noise over the 

water bodies.  While SVM performed well in detecting the land cover types removing 

the no data value over the water bodies and surrounding built-up areas. 

 

 

Figure 2. Supervised classification using  SAM, SID, and SVM (left to right) showing five classes 

and unclassified labels. 

3.2. Accuracy assessment   

The confusion matrix table for each of the classification algorithms (SVM, SID, and 

SAM) is represented in Table 1, Table 2, and Table 3. 

SVM achieved an exceptional accuracy of 92.03% , SID had 89.60% and SAM had  

91.23%. The confusion matrices provide further insights into the classification 

performance, detailing the distribution of true positives (correctly classified pixels), true 

negatives, false positives, and false negatives for each classifier. The high values in the 

diagonal of the confusion matrices indicate strong agreement between predicted and 

actual class labels. 

 

 

Table 1. Accuracy assessment of SVM. 
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Class Baresoil Grassland Water Built-up Vegetation Total 

Unclassified 0 0 0 0 0 0 

Baresoil 77.62 2.98 0 2.46 0 1.31 

Grassland 14.69 94.47 0 7.91 1.09 3.71 

Water 0 0 99.25 4.61 0 23.68 

Built-up 6.99 0 0.75 41.55 0.08 5.06 

Vegetation 0.7 2.55 0 43.47 98.83 66.24 

Total 100 100 100 100 100 100 

Overall Accuracy = 92.03%   

Table 2. Accuracy assessment of SID. 

Class Baresoil Grassland Water Built-up Vegetation Total 

Unclassified 0 0 0 0 0 0 

Baresoil 79.02 3.4 0.3 10.91 0.03 2.39 

Grassland 20.98 96.6 0 13.52 2.98 5.64 

Water 0 0 96.85 0 0 22.6 

Built-up 0 0 2.85 34.79 0.03 4.65 

Vegetation 0 0 0 40.78 96.96 64.72 

Total 100 100 100 100 100 100 

Overall Accuracy = 89.60% 

Table 3. Accuracy assessment of SAM. 

Class Baresoil Grassland Water Built-up Vegetation Total 

Unclassified 0 0 1.43 0 0 0.33 

Baresoil 92.31 2.98 0.23 8.76 0.08 2.32 

Grassland 7.69 97.02 0 10.6 2.08 4.59 

Water 0 0 97.52 0 0 22.75 

Built-up 0 0 0.83 41.55 0.03 4.95 

Vegetation 0 0 0 39.09 97.81 65.05 

Total 100 100 100 100 100 100 

Overall Accuracy = 91.23% 

4. Discussion 

The accuracy assessment results of the land use land cover classification, employing 

SVM, SAM, and SID classifiers, reveal promising outcomes for the hyperspectral image. 

The achieved accuracies for all three classes indicate they performed really well for 

detailed classification. While SVM stands as a top-performing classifier with the highest 

accuracy of 92.03% among the three of them.  The result was consistent with a comparative 

study on the effectiveness of image classification algorithms, including SVM, SAM, and 

SID conducted by [14] and [15], which also concluded that SVM performs better than other 

methods. Despite showing the highest accuracy, SVM is computationally intensive, 

especially with large datasets. Though SAM had negligible differences with SVM, SAM is 

proven to be best in capturing spectral similarity based on spectral angles [15].  

The notable outcomes of this research are the consistency of distinguishability of 

forest and water across all employed classification schemes. This implies the spectral 

signatures of these classes are distinct and easily discernible by the selected classifiers. In 

contrast, variability is seen in built-up areas. Also, the challenge seen in this research is 

the shadow, particularly tall structures, and trees. In many cases, these shadows create 

dark pixels within the image and can be incorrectly classified as water bodies. 
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5. Conclusion 

Following an analysis of different supervised image classifiers, we discovered that 

SVM outperforms other classifiers in accurately identifying land cover land use classes 

and is also effective at handling high-dimensional data. Following SVM, SAM can also 

serve as a suitable method for detecting land cover land use classes, as there was 

negligible difference between SAM and SVM. The detection in built-up areas and water 

bodies is slightly mislabeled with shadow by SID. Whereas, the SVM demonstrated its 

effectiveness in handling such scenarios. Hence, these three supervised classifiers were 

demonstrated to be effective in classifying remotely sensed data. 
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