IECPS 2024

The 3rd International Electronic Conference on Plant Sciences 15–17 January 2024 | Online

Synergistic effect between different plant growth promoting bacteria and various nitrogen rates on production and quality of fennel grown in open field

Lorena Vultaggio¹, Beppe Benedetto Consentino¹, Salvatore La Bella¹, Leo Sabatino¹ ¹Department of Agricultural, Food and Forestry Sciences - University of Palermo, Viale delle Scienze, ed. 5, 90128 Palermo, Italy.

INTRODUCTION & AIM

It is well known that traditional agriculture makes extensive use of chemical nitrogenous fertilisers. In line with the provisions of the European Green Deal, it is necessary to reduce the use of chemical inputs in favour of the application of more environmentally sustainable alternatives. Microbial biostimulants are alternative and environmentally sustainable an

RESULTS & DISCUSSION

agronomic tool to achieve these results.

The aim of this study was to evaluate the interactive effect of four different levels of N (0, 45, 90 and 180 kg ha⁻¹) and three PGPBs (Azospirillum brasilense, Bacillus subtilis and Streptomyces violaceoruber) on the quanti-qualitative performance of fennel 'Leonardo' F_1 grown in open field.

METHOD

The experiment was conducted under field conditions, in an experimental field at the University of Palermo located in Termini Imerese (PA). The investigation was performed during 2021-2022 winter period.

illum brasilense DSM 2298

Treatments

1° fix factor: NITROGEN DOSE (kg ha ⁻¹)	2° fix factor: PGPBs
 0 45 90 180 	 Control Azospirillum brasilense DSN Bacillus subtilis DSM 10 Streptomyces violaceoruber

	(g 100g ⁻¹ pf)	(g)	
Control	4.408 c	739.9b	
A. brasilense	5.508a	776.8a	
B. subtilis	4.942b	755.5b	
S. violaceoruber	5.492 a	779.8a	
0	5.092a	677.2 d	
45	5.092a	737.5c	

- Split-plot experimental design;
- 2-factor experiment producing 12 treatments, 3 replicates per treatment (10 plants per replicate);
- Two-way ANOVA and separation of means by Tukey's test.
- Root inoculation of bacteria before planting and under cover (after 15 days) 10⁹ CFU/mL
- Nitrogen was supplied from 20 days after transplanting in 3 applications

AGRONOMIC AND ANALYTICAL DETERMINATIONS

- Fennel fresh weight
- Total sugars
- Ascorbic acid
- Phenols
- Nitrogen

90	5.083a	802.8b
180	5.083a	834.6a

CONCLUSION

In conclusion, our results suggest that the tested PGPBs can considered an eco-friendly tool to improve fennel be productivity and quality, particularly when combined with suboptimal N doses (45 or 90 kg ha⁻¹).

FUTURE WORK / REFERENCES

The experiment will be repeated another year to confirm or refute the results obtained. Moreover, we will test these microorganism on other plant species.

https://iecps2024.sciforum.net/