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Abstract: Quickly and accurately judging the quality grades of apples is the basis for choosing 1

suitable harvesting date and setting a suitable storage strategy. At present, the research of multi-task 2

classification algorithm models based on CNN is still in the exploration stage, and there are still some 3

problems such as complex model structure, high computational complexity and long computing 4

time. This paper presents a light-weight architecture based on multi-task convolutional neural 5

networks for maturity (L-MTCNN) to eliminate immature and defective apples in the intelligent 6

integration harvesting task. L-MTCNN architecture with diseases classification sub-network (D-Net) 7

and maturity classification sub-network (M-Net), to realize multi-task discrimination of the apple 8

appearance defect and maturity level. Under different light conditions, the image of fruit may have 9

color damage, which makes it impossible to accurately judge the problem, an image preprocessing 10

method based on brightness information was proposed to restore fruit appearance color under 11

different illumination conditions in this paper. In addition, for the problems of inaccurate prediction 12

results caused by tiny changes in apple appearance between different maturity levels, triplet loss 13

is introduced as the loss function to improve the discriminating ability of maturity classification 14

task. Based on the study and analysis of apple grade standards, three types of apples were taken 15

as the research objects. By analyzing the changes in apple fruit appearance in each stage, the data 16

set corresponding to the maturity level and fruit appearance was constructed. Experimental results 17

show that D-Net and M-Net have significantly improved recall rate, precision rate and F1-Score in all 18

classes compared with AlexNet, ResNet18, ResNet34 and VGG16. 19

Keywords: Light-weight CNN; Multi-task; Fruit Quality 20

1. Introduction 21

Fruit appearance grades are usually determined by attributes such as color, maturity, 22

shape, texture, and size of the fruit. Manual grading faces practical difficulties such 23

as subjective inconsistency, high cost, long time required, and insufficient number of 24

professional grading staff during peak seasons. The appearance grade of apples has a great 25

influence on consumers and market prices, so the task of fruit grading has become one of 26

the most important research areas for many orchard planters and farm entrepreneurs[1–5]. 27

Measuring the grade of apples mainly includes two important indicators of apple maturity 28

and whether the appearance is defective. These two indicators are also important criteria 29

for market sales[6]. As the apple ripens, the chlorophyll content inside the fruit decreases, 30

the red pigment in the skin increases, the flesh becomes softer, starch converts into sugar, 31

and the acidity decreases. Therefore, the maturity of an apple is determined by multiple 32

factors, including the appearance color, hardness, starch content[7], soluble solids content, 33

and sugar content. Chemical methods based on quantitative testing of various components 34

inside the fruit are commonly used to assess its maturity[8,9], but they often cause damage 35

to the fruit, rendering it unsuitable for further sale [10]. Changes in the appearance color 36

are a key indicator of apple ripeness and can be used to determine the maturity grade. 37
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With the development of computer image processing and machine vision technology, non- 38

destructive automatic assessment of apple maturity can be achieved. By analyzing and 39

processing the changes in appearance color, it is possible to discern the maturity level 40

of the fruit. This method enables fast and accurate maturity evaluation without causing 41

damage to the fruit. To achieve intelligent integrated operations and automate task of 42

apple selecting by removing unripe or defective apples, this paper proposes a lightweight 43

multitask maturity classification model called Light-Weights Multi-Task Convolutional 44

Neural Network for Maturity (L-MTCNN). The model consists of two sub-networks: the 45

Disease-Classification Sub Network (D-Net) and the Maturity-Classification Sub Network 46

(M-Net). These sub-networks enable the multi-task classification of apple appearance 47

defects and maturity levels. Furthermore, to address the issue of inaccurate predictions 48

caused by minimal appearance changes between different maturity levels, Triplet-Loss [11] 49

is employed as the loss function for the Maturity-Classification Sub Network (M-Net). This 50

loss function aims to increase the distance between different maturity levels and reduce the 51

distance within the same level. By analyzing the appearance changes of apples at various 52

stages and utilizing industry standards, a dataset is constructed that correlates maturity 53

levels with corresponding fruit appearance. The experimental results demonstrate that 54

both D-Net and M-Net exhibit significant improvements in terms of recall, precision, and 55

other metrics compared to classification models which validates that M-Net possesses high 56

generalization capabilities. 57

2. Image Dataset Setup 58

The presence of disease for fruits is an important criterion for its quality. Apple surface 59

defects primarily result from diseases, pests, and external damages. To setup diversity 60

dataset, this paper utilizes methods such as on-site photography and online retrieval to 61

collect 1680 images of apples with disease. These images are manually labeled and cropped 62

to create a defect dataset. In addition, to establish an accurate relationship between fruit 63

appearance and maturity, on-site collection is employed to analyze the changes in apple 64

appearance during the ripening period. Depending on the corresponding relationship 65

between the changes in fruit epidermis and ripeness, the fruit ripeness grade was divided 66

into four categories according to the United States Standards for Grades of Apples [12]. 67

[12] indicated as a mature apple becomes overripe it will show varying degrees of firmness, 68

depending upon the stage of the ripening process, hence “Hard”, “Firm”, “Firm ripe”, 69

and “Ripe” were the four terms used for describing the different stages. Due to the 70

appearance of fruits being highly related to its attributes, we invited experts to label these 71

images. According to the captured image date and the appearance of each fruit, the experts 72

classified these images into unripe, turning, ripe, and overripe. These four categories were 73

respectively marked as grade one (G1), grade two (G2), grade three (G3), and grade four 74

(G4) for short. 75

3. CNN-based lightweight Multi-task Classification 76

To achieve integrated non-destructive maturity assessment of apples, the task is 77

divided into two subtasks: fruit disease detection and maturity classification. For fruits 78

with diseases, their maturity categories are not considered. For fruits without diseases, 79

further assessment is required to determine their maturity levels. 80

There are limitations to using color thresholding based on image space transformation 81

to classify fruit maturity levels, as it may not effectively capture the small differences 82

between different levels of the same fruit type. Additionally, image processing or machine 83

learning classification models often require appropriate feature selection based on empirical 84

knowledge, which can lead to lower accuracy if the features are not chosen correctly. Cur- 85

rently, CNN-based classification models such as VGG-16[13], ResNet[14], and AlexNet[15] 86

have shown excellent performance in various classification tasks. However, these models 87

are deep and have a large number of parameters, requiring a significant amount of training 88

data to prevent issues such as gradient explosion or overfitting. Lightweight classification 89
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models like the MobileNet[16] series have the advantage of having a shallower network 90

structure with fewer parameters compared to the aforementioned models. However, these 91

models are designed for single-task classification and cannot handle multiple classification 92

tasks simultaneously. Therefore, in this section, based on the strengths and weaknesses 93

of various classification models and the specific requirements of apple classification tasks, 94

a lightweight multi-task CNN classification model is designed and implemented. The 95

structure of the model is shown in Figure 1. 96

Figure 1. The structure of the multi-task classification architecture. Note: The dimensions and
numbers in parentheses represent the output feature dimensions of each corresponding layer. CONV
denotes the convolutional layer, where k represents the size of the convolutional kernel and s
represents the stride. MP denotes the max pooling layer, where s represents the stride information.
RELU represents the non-linear activation function. FLATTEN denotes the flattening operation. DP
denotes the dropout processing. FC denotes the fully connected layer.

The classification model consists of a backbone network, a Disease Classification 97

Sub-Network (D-Net), and a Maturity Classification Sub-Network (M-Net). The backbone 98

network is responsible for extracting common feature information from the input images 99

and providing this information to both the disease detection task and the maturity clas- 100

sification task. After obtaining the feature information extracted by the trunk network, 101

feature extraction is performed for disease detection to determine whether the fruit has any 102

appearance disease. The maturity classification task utilizes the feature information from 103

the trunk network to classify the maturity level of the fruit, achieving differentiation based 104

on maturity. The following is a detailed introduction to each sub network: 105
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1. Trunk Network: Responsible for extracting common feature information from input 106

images, 107

2. D-Net: Focuses on targeted feature extraction for defect detection, 108

3. M-Net: Utilizes the shared features from the trunk network to classify the maturity 109

grades of fruits. 110

3.1. Trunk Network 111

The trunk network is responsible for extracting common feature information required 112

by both the M-Net and D-Net. Therefore, the design of this component directly affects 113

the prediction results of the two sub-tasks and the accuracy of fruit quality classification. 114

During the training process, as the depth of the neural network increases, there is a risk 115

of degradation in model performance[14]. To address this issue, an improved backbone 116

network based on the principles of residual networks is adopted. In this section, a five-layer 117

CNN model is used as the backbone network to extract feature information. The design 118

of the backbone network utilizes a skip connection structure to mitigate problems such as 119

gradient explosion or over-fitting. By sharing features, the extracted feature information is 120

simultaneously provided to both the defect classification task and the maturity classification 121

task. 122

3.2. Defects Classification Sub-Network 123

Due to the prominent feature information of whether the fruit appearance is defective, 124

a two-layer CNN model is designed for feature extraction in the D-Net. The loss function is 125

defined as equation: 126

Li
det = −(yi

detlog(pi) + (1 − yi
det)(log(1 − (pi)) (1)

3.3. Maturity Classification Sub-Network 127

Compared to the binary classification task of whether the fruit appearance is defective, 128

the apple maturity classification task is more complex. Therefore, the design of M-Net 129

is based on a model architecture with short connections[14]. Additionally, due to the 130

small differences between different maturity grades of apples, to increase the distance 131

between different categories and reduce the distance within the same category during 132

model training, Triplet-loss is used as the loss function, as shown as equation: 133

L =

[∥∥∥ f (xi
a)− f (xi

p)
∥∥∥2

2
−

∥∥∥ f (xi
a)− f (xi

n)
∥∥∥2

2
+ α

]
+

(2)

Where f (xi
a) denotes the learned feature vector, f (xi

p)denotes the feature vector of the 134

current positive sample, and f (xi
n)denotes the feature vector of the current negative sam- 135

ple.
∥∥∥ f (xi

a)− f (xi
p)
∥∥∥2

2
and

∥∥ f (xi
a)− f (xi

n)
∥∥2

2represent the Euclidean distances between the 136

current learned feature vector and the normalized feature vectors of the positive and neg- 137

ative samples, respectively. The distance between the current feature and the positive 138

sample should be smaller than the distance between the current feature and the negative 139

sample, with qi representing the threshold value for the difference between the positive 140

and negative sample distances. 141

4. Experiments 142

The main configuration of the experiment equipment used in this study includes 143

an Intel i5-7500 CPU @ 3.20GHz processor, 8 GB of RAM, and a dedicated graphics card 144

NVIDIA GeForce GTX1060 with 3GB of memory. The operating system is Ubuntu 16.04, 145

the software development environment is PyTorch, and the programming language used is 146

Python. 147
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4.1. Evaluation Standard 148

The terms of precision, recall, and F1-score, and accuracy were taken as the evaluation 149

indexes to verify our proposed network extensively and quantitatively. The corresponding 150

formulas are shown as equations: 151

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2TP

2TP + FP + FN
(5)

Accuracy =
TP + TN

TP + TN + FN + FP
(6)

Specifically, the TP, TN, FP, and FN represent the relationship between the observed 152

value and the predicted value, as shown in Table 1. 153

Table 1. Instructions for the elements of TP, TN, FP and FN.

Label Name Predicted Positive Predicted Negative

True Positive TP FN
True Negative FP TN

4.2. Model Training 154

The proposed network model consists of a backbone network, M-Net, and D-Net. 155

However, the datasets used for training M-Net and D-Net are completely different, making 156

it challenging to train both networks simultaneously. Considering that the classification 157

task of M-Net is more complex than that of D-Net, this study adopts a two-step training 158

approach. First, the M-Net subnetwork model is trained independently. After completing 159

the training of M-Net, the backbone network parameters and M-Net parameters are fixed, 160

and then the D-Net network is trained. 161

5. Results 162

5.1. D-Net Results 163

The evaluation results of the D-Net model compared to the classical network models 164

AlexNet, ResNet-18, ResNet-34, and VGG-16 in terms of precision, recall, F1-score, and 165

accuracy for different categories. The table shows the performance of the D-Net in com- 166

parison to the other models. The evaluation results of the model for disease and normal 167

category are shown in Table 2 and Table 3,respectively. 168

Table 2. The classification results of defect fruits by D-Net.

Model Accuracy Recall Precision F1-score

AlexNet 0.90 0.92 0.88 0.90
ResNet-18 0.94 0.96 0.92 0.94
ResNet-34 0.94 0.92 0.96 0.94
VGG-16 0.86 0.85 0.88 0.86
D-Net 0.96 0.96 0.96 0.96
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Table 3. The classification results of normal fruits by D-Net.

Model Accuracy Recall Precision F1-score

AlexNet 0.90 0.92 0.88 0.90
ResNet-18 0.94 0.92 0.96 0.94
ResNet-34 0.94 0.96 0.92 0.94
VGG-16 0.86 0.88 0.84 0.86
D-Net 0.96 0.96 0.96 0.96

According to the results, for the classification task of appearance diseases, the D-Net 169

model achieves higher accuracy compared to AlexNet, ResNet-18, ResNet-34, and VGG-16, 170

with improvements of 6%, 2%, 2%, and 10%, respectively. This indicates that the proposed 171

D-network outperforms the classical network models in terms of accuracy. To further 172

evaluate the model, the performance of D-Net in terms of recall, precision, and F1-score 173

is analyzed for both disease and normal classes. For the disease classification task, D-Net 174

shows improvements in recall of 4%, 0%, 4%, and 11% compared to AlexNet, ResNet-18, 175

ResNet-34, and VGG-16, respectively. The precision also improves by 8%, 4%, 0%, and 8% 176

for the respective models. For the normal classification task, D-Net achieves improvements 177

in recall of 8%, 4%, 0%, and 8% and in precision of 4%, 0%, 4%, and 12% compared to 178

AlexNet, ResNet-18, ResNet-34, and VGG-16, respectively. These results demonstrate that 179

the proposed D-Net model achieves higher accuracy for the binary classification task of 180

appearance classification task, and it also highlights the superior performance of ResNet-18 181

and ResNet-34 compared to AlexNet and VGG-16. The probably reason for these results 182

are due to the residual structure for D-network, which are more effective for extracting 183

image features. The distribution of values in the confusion matrix is shown in Figure2. 184

Figure 2. Confusion matrix results for bi-classification of disease from D-Net. In particular, (1), (2), (3)
and (4) are the results of Alexnet, Resnet, VGG-16 and D-net, respectively

As the confusion matrix shown, it can be observed that the AlexNet, ResNet-18, VGG- 185

16, and D-Net network models achieve good results in predicting the binary task of defect 186

and non-defect classes. All the models are able to accurately discriminate whether a fruit 187
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has a disease or not with high accuracy. In particular, D-Net achieves a prediction accuracy 188

of 0.96, which is higher than the other network models, indicating its superior performance. 189

5.2. M-Net Results 190

We evaluated the proposed M-Net with AlexNet, ResNet18, ResNet34, and VGG16 on 191

maturity classification task. The evaluation includes average accuracy and the indicator of 192

recall, precision, and F1-score for each maturity grade, as shown in Table 4. 193

Table 4. The classification results of maturity fruits by M-Net.

Grade
Level indicators AlexNet ResNet-18 ResNet-34 VGG-16 M-Net

G1 Recall 0.74 0.76 0.78 0.65 0.91
G1 Precision 0.68 0.76 0.72 0.60 0.84
G1 F1-score 0.71 0.76 0.75 0.63 0.87
G2 Recall 0.50 0.63 0.62 0.44 0.76
G2 Precision 0.56 0.60 0.64 0.48 0.76
G2 F1-score 0.53 0.61 0.63 0.46 0.76
G3 Recall 0.68 0.76 0.72 0.67 0.81
G3 Precision 0.68 0.76 0.72 0.64 0.88
G3 F1-score 0.68 0.76 0.72 0.65 0.85
G4 Recall 0.92 0.88 0.88 0.85 0.96
G4 Precision 0.88 0.92 0.92 0.88 0.96
G4 F1-score 0.90 0.90 0.90 0.86 0.96
- Accuracy 0.70 0.76 0.75 0.65 0.86

According to the results, compared to AlexNet, ResNet-18, ResNet-34, and VGG-16, 194

the M-Net model shows a significant improvement in average accuracy. Furthermore, 195

M-Net outperforms AlexNet, ResNet-18, ResNet-34, and VGG-16 by evaluating the model’s 196

performance in terms of recall, precision, and F1-score for each maturity grade. Specifically, 197

as for G1, M-Net improves the F1-score by 16%, 11%, 12%, and 24% respectively. As for G2, 198

the improvements are 23%, 15%, 13%, and 30% respectively. For G3, the improvements are 199

17%, 9%, 13%, and 20% respectively. And for G4, the improvements are 6%, 6%, 6%, and 200

10% respectively. These results indicate that M-Net achieves significant improvements in 201

classifying different maturity grades. The distribution of values in the confusion matrix for 202

each maturity grade is shown in Figure 3. 203
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Figure 3. Confusion matrix of ripenss classification results from M-Net. In particular, (1), (2), (3) and
(4) are the results of Alexnet, Resnet, VGG-16 and D-net, respectively

As the results shown, for the ripeness classification task of Fuji apple, all models per- 204

form the best in predicting G4, followed by maturity G3 and G1, and the most challenging 205

predictions are for maturity G2. The possible reason for this phenomenon is that matu- 206

rity G4 has distinct features compared to the other three grades, while G2 shares similar 207

characteristics with G1 and G3, leading to confusion and affecting the final prediction 208

results. 209

6. Conclusions 210

This paper proposes a lightweight CNN based architecture to achieve task of apple ma- 211

turity grade and fruit appearance defects. The model proposed a lightweight trunk network 212

to extract feature information, share the weights to the D-Net and M-Net sub-networks, 213

which improving the utilization of features and reducing the number of parameters. To 214

address the issue of low accuracy caused by tiny changes between different ripeness grades, 215

Triplet-Loss function is introduced as the loss function for M-Net, enlarging the feature 216

distance between different ripeness grades and reducing the feature distance for the same 217

grade. To enhance the model’s generalization ability in practical applications, this paper 218

constructs an apple maturity dataset based on the study of appearance changes in multiple 219

apple varieties during the ripening process. Experimental results demonstrate that the 220

proposed L-MTCNN outperforms the compared models in multi-classification task. 221
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