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Abstract: Assessing the environmental impact of the mineral extraction industry plays a critical role in
understanding and mitigating the ecological consequences of extractive activities. This paper presents
MineSegSAT, a model that presents a novel approach to predicting environmentally impacted areas
of mineral extraction sites using the SegFormer deep learning segmentation architecture trained
on Sentinel-2 data. The data was collected from non-overlapping regions over Western Canada in
2021 containing areas of land that have been environmentally impacted by mining activities that
were identified from high-resolution satellite imagery in 2021 [1]. The SegFormer architecture, a
state-of-the-art semantic segmentation framework, is employed to leverage its advanced spatial
understanding capabilities for accurate land cover classification. We investigate the efficacy of loss
functions including Dice, Tversky, and Lovasz loss respectively. The trained model was utilized
for inference over the test region in the ensuing year to identify potential areas of expansion or
contraction over these same periods. The Sentinel-2 data is made available on Amazon Web Services
through a collaboration with Earth Daily Analytics which provides corrected and tiled analytics-ready
data on the AWS platform. The model and ongoing API to access the data on AWS allow the creation
of an automated tool to monitor the extent of disturbed areas surrounding known mining sites to
ensure compliance with their environmental impact goals.
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1. Introduction

This paper introduces MineSegSAT, a deep learning image segmentation model using
the SegFormer architecture that is designed to segment areas of land that have been
environmentally impacted by mineral extraction operations. The mining industry has seen
a considerable expansion in recent years [2] driven by growing demand for raw materials
[3] and demand trends indicate this growth will continue [4]. While this sector is important
for the industrialization of the global economy, mining sites can have adverse impacts on the
immediate and near environment during mining operations and after closure. Identifying
specifically environmentally impacted areas of land can benefit regulators and mining
operations internally to ensure environmentally conscientious practices are upheld.

This project extracts Sentinel-2 tiles in Western Canadian provinces including British
Columbia and Alberta that overlap with features of mining sites like waste rock dumps,
pits, water ponds, tailing dams, heap leach pads and processing/milling infrastructure [1].
The training, validation, and test datasets use 12 of the 13 bands captured from Sentinel-2,
omitting Band 10 as it is typically used for atmospheric correction. 134 tiles were extracted
from Sentinel-2 tiles, each spanning 7,680m2 and their mining types were manually anno-
tated based on overlapping OpenStreetMap views and the Canadian Minerals and Mining
Map [5]. More than 85 percent of the tiles that are included in the dataset contain at least
one mining pixel, though only roughly 4 percent of the total pixels included in the dataset
contain environmentally impacted sections of land. This paper proposes a lightweight
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implementation of the SegFormer model architecture, a vision transformer-based deep
learning model, which was introduced in 2021, by Xie, E. et. al [6] with the minor modifica-
tion that the most performant model replaces the cross entropy loss function used in the
original work with the Tversky Loss function [7].

2. Related Work

Deep learning has broad and significant applications in the context of remote sensing
and environmental monitoring while Sentinel-2 data has proven to be useful for land cover
and land use mapping and for improving the automation of environmental monitoring
[8]. In the context of monitoring mineral extraction operations, deep learning models and
remote sensing data have been used to assess the significance of environmentally impacted
areas [9] and to identify unregistered and illegal mining operations [10] [11].

The original transformer architecture proposed an encoder-decoder architecture using
multi-head attention and feed-forward layers respectively to globally attend to information
from a pair of input sequences [12]. The self-attention component in the architecture
updates the value for each element in a sequence by aggregating information from the
entire input. Variations of the original architecture that typically do not include cross-
attention components detailed in the original architecture have since been applied to
computer vision problems such as image classification and segmentation with considerable
success. Both image classification and segmentation transformer-based models respectively
have demonstrated state-of-the-art performance on benchmark data sets [13] [14] [15] [16].
Transformer-based model architectures have similarly been applied to remote sensing
segmentation and classification benchmarks with performance that rivals and in many
cases improves on the performance of state-of-the-art model architectures [17].

In this paper, we explore using an implementation of the SegFormer model, a simple
semantic segmentation model that uses a UNet architecture - unifying Transformer encoders
with lightweight multilayer perception (MLP) decoders. This model is of particular interest
since it uses lightweight multi-layer perception (MLP) layers in the decoder and outputs
multi-scale features from the Transformer encoder layers. Since this model is outputting
multi-scale features, it does not need to train positional embedding layers which can lead to
decreased performance when the training and testing resolutions differ [6]. In the context
of remote sensing, this model has been used to extract information for water bodies [18],
detect buildings using optical remote sensing images [19], segment coastal wetlands from
Sentinel-2 data [20], and for performing road segmentation [21].

3. Data

This model was trained using Sentinel-2 tiles, extracted from
Amazon Web Services through a collaboration with Earth Daily An-
alytics which provides atmospherically corrected analytics-ready data
on Amazon Web Services. The observation dates for the tiles used for
training were from April 1st to September 1st in 2021 for the training
period and then a comparison of tiles overlapping the test dataset in
2021 were compared from 2022 for inference and inspection. The tiles
that were chosen have less than 1 percent cloud coverage and the tiles
within the same coordinate reference system (CRS) were merged using
the reverse painter’s algorithm. The intersecting ground truth masked
data from [1] was reprojected to the CRS of the merged Sentinel-2
tiles and then converted to a raster with 10m resolution to match the
resolution of the input tiles.

Given that mining sites in Canada are subject to federal, provincial, and territorial
environmental laws and are identified by organizations like Natural Resources Canada
[5], the dataset overwhelmingly includes tiles that include environmentally impacted
areas of mineral extraction sites identified by Tang and Werner [1]. From the mineral
extraction sites that were identified in the original paper, Figure 1 shows the types of
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mineral extraction operations that could be confidently intersected with the ground truth
masks used to train this model based on visual inspection with overlapping mapped areas
using OpenStreetMap and [5].

Mining Operation # of Sites
Coal 40

Aggregate 28
Precious Metals 31

Mercury 4
Uranium 3

Figure 1. Types of Mineral Extrac-
tion Operations Identified

Each mask and corresponding band file for each pe-
riod were then split into tiles with dimensions 768x768,
384x384, and 128x128 pixels respective to resolutions of
10m, 20m, and 60m. Note that 4 percent of the pixels
included in the dataset used for training, validation, and
testing include environmentally impacted areas of min-
ing sites and 86 percent of the 134 tiles include environ-
mentally impacted sites. The dataset can be downloaded
from Google Drive using this link.

4. Model

The SegFormer model was introduced in 2021 as a lightweight transformer-based
image segmentation model with an encoder-decoder or UNet architecture. Differing
from the originally proposed Transformer architecture which requires encoding positional
information for inputs, the SegFormer encoder layers use feed-forward layers to output
multi-scale features, which avoids the need to interpolate positional codes which can lead
to decreased performance when training and testing input resolutions differ [6]. The model
architecture avoids complex decoders, instead using multilayer perceptron (MLP) layers
that aggregate information from each feature map generated by encoder layers. The model
architecture used for this experiment is very similar to the B3 implementation-sized model
proposed in the original SegFormer paper [6] and differs in that the number of transformer
layers used in the second of four layers in the encoder is 4 instead of the 3 used in the
original model. This distinction was made as including the additional encoder layer proved
to be beneficial in early model verification training iterations.

Figure 2. SegFormer Model Architecture

https://drive.google.com/drive/folders/1FMruAwQeOB0T8BunxzBmjQI5R5uj6wAp?usp=sharing
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5. Experiments

Training of this model was performed using loss functions including Tversky Loss,
Dice Loss, and Lovasz-Hinge Loss. For brevity, we focus on the results of the Tversky
Loss function since it outperformed the other loss functions. Consider an image as a
tensor x ∈ [0, 1]L×H×W with a corresponding segmentation mask y ∈ {0, 1}C×H×W , and let
ŷ ∈ {0, 1}C×H×W , where C = 1 since we are using this loss function for binary segmentation.
Now let α, β > 0. Then the Tversky Loss denoted by T corresponding to y and ŷ is given by

Tα,β(y, ŷ) =
yŷ

yŷ + α(1− y)ŷ + βy(1− ŷ) + δ

where δ > 0 is a smoothing coefficient. Observe that setting α = β = 0.5 gives us the Dice
Loss and setting α = β = 1 produces the Jaccard Loss.

The metrics that were used for evaluating the efficacy of the predictions outputted by
the model were the F1-Score, Precision, and Recall as stated below, where True Positives is
given by TP; False Positives is given by FP; and False Negatives are given by FN.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1score =
2× Precision× Recall

Precision + Recall

Each of these metrics are computed on a per-pixel basis for each image and the returned
score is the average of the score for each image.

Train Transforms Probability
Random Crop 100%
Vertical Flip 50%

Random Rotation 50%
Horizontal Flipping 50%

Channel Shuffle 30%

Figure 3. Transformations applied dur-
ing training

Given that the band dimensions vary in their
resolution, each of the respective 20m and 60m
bands were up-sampled to the 10m resolution bands
using interpolation. Before feeding data to the model
during training, validation, and testing stages, data
transformations were applied to each instance. The
transforms applied during training were applied
with a given probability detailed in Figure 3 on each
input tile, while only random cropping was used for
validation data, and patch merging for the test dataset. The model size that was used on the
dataset was 512x512 and the batch size used during training and validation was 8. During
the test stage, individual images were fed into the model.

The model was trained for 1,000 epochs with a learning rate of 0.0003 using a Cosine
Annealing learning rate and was then fine-tuned for another 1,000 epochs with a starting
learning rate of 0.0001. The dataset was split such that 70% of samples were used for
training, 15% for validation, and the remaining 15% of samples for testing. An additional
experiment was performed to verify the results of the test dataset on the test region in the
ensuing year, which did not result in additional environmentally impacted mining areas
being identified. Code that accompanies this paper can be found here. The results for the
most performant model across the training, test, and validation datasets were as follows:

F1 Precision Recall
train 0.5743 0.5514 0.5992
val 0.7261 0.7216 0.5461
test 0.5035 0.4890 0.5189

https://github.com/macdonaldezra/MineSegSAT
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Figure 4. Model predictions on test dataset

6. Conclusion & Future Work

The ground truth data provided and models trained on this data are demonstrably
capable of identifying the features identified in the original paper, though more work is
required to assess the quality of the ground truth dataset and improve the performance of
the model such that it might be useful for performing accurate environmental monitoring
that can be reliably used in real-time. Correlating the identified mining areas with existing
publicly identified above-ground or visibly environmentally impacted mining areas could
be beneficial for better understanding the efficacy of the data and areas where the model is
challenged in making accurate predictions.

From this sample dataset, the model struggles to identify characteristics like tailing
ponds as seen in Figure 4 as well as built-up rock piles. Waterways like rivers, lakes, and
potentially non-impacted water sources were included in the dataset including alpine and
mountainous regions which may explain the model’s challenge in identifying the respective
features. Further training could be done that uses a larger dataset with additional mining
sites and more generalized model pre-training in an effort to improve the robustness of the
model. Data sources like Sentinel-1 data that include pertinent information about ground
features and more data take periods over mining areas could be used in the training and
evaluation datasets to provide a more enriched analysis of a given area. Further, other
deep learning architectures should be trained on the dataset to establish a performance
benchmark on the dataset and improve the understanding of areas of strength and weakness
in predicting the masked regions.
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A model trained based on these findings could present value for identifying and
assessing multiple risks posed by mineral extraction operations by identifying anomalies
in the size variation of tailing ponds, rock pile formations, open-pit mines, and process-
ing/milling infrastructure which were identified in the ground truth masks. This model
would thrive in a circumstance where it is monitoring known active or previously active
mineral extraction sites that pose a potential threat to the environment. Given that this
data is made available by government agencies [5], implementing a meaningful deep
learning-based monitoring service of this nature is not only possible but could significantly
benefit the environmental monitoring of mineral extraction sites.

References
1. Tang, L.; Werner, T.T. Global mining footprint mapped from high-resolution satellite imagery. Commun Earth Environ 2023,

4, 1–12. https://doi.org/10.1038/s43247-023-00805-6.
2. Maus, V.; Giljum, S.; da Silva, D.M.; Gutschlhofer, J.; da Rosa, R.P.; Luckeneder, S.; Gass, S.L.B.; Lieber, M.; McCallum, I. An

update on global mining land use. Sci Data 2022, 9, 433. https://doi.org/10.1038/s41597-022-01547-4.
3. Lenzen, M.; Geschke, A.; West, J.; Fry, J.; Malik, A.; Giljum, S.; Milà i Canals, L.; Piñero, P.; Lutter, S.; Wiedmann, T.; et al.

Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat Sustain 2022,
5, 157–166. https://doi.org/10.1038/s41893-021-00811-6.

4. IRP, U. Global resources outlook 2019: Natural resources for the future we want. Technical report, United Nations Environment
Programme, 2019.

5. Government of Canada, N.R.C. Natural Resources Canada. The Atlas of Canada. Minerals and Mining in Canada, 2021.
6. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic

Segmentation with Transformers. 2021.
7. Salehi, S.S.M.; Erdogmus, D.; Gholipour, A. Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep

Networks. In Proceedings of the Machine Learning in Medical Imaging; Wang, Q.; Shi, Y.; Suk, H.I.; Suzuki, K., Eds., Cham, 2017;
Lecture Notes in Computer Science, pp. 379–387. https://doi.org/10.1007/978-3-319-67389-9_44.

8. Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping:
A Review. Remote Sensing 2020, 12, 2291. https://doi.org/10.3390/rs12142291.

9. Gerassis, S.; Giráldez, E.; Pazo-Rodríguez, M.; Saavedra, ; Taboada, J. AI Approaches to Environmental Impact Assessments
(EIAs) in the Mining and Metals Sector Using AutoML and Bayesian Modeling. Applied Sciences 2021, 11, 7914. https:
//doi.org/10.3390/app11177914.

10. Balaniuk, R.; Isupova, O.; Reece, S. Mining and Tailings Dam Detection in Satellite Imagery Using Deep Learning. Sensors (Basel)
2020, 20, 6936. https://doi.org/10.3390/s20236936.

11. Rangnekar, A.; Hoffman, M. Learning representations to predict landslide occurrences and detect illegal mining across multiple
domains. In Proceedings of the Climate Change AI. Climate Change AI, 2019.

12. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, ; Polosukhin, I. Attention is all you need.
In Proceedings of the Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran
Associates Inc., NIPS’17, pp. 6000–6010.

13. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ArXiv 2020.

14. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.S.; et al. Rethinking Semantic
Segmentation From a Sequence-to-Sequence Perspective With Transformers. pp. 6881–6890.

15. Liu, Z.; Hu, H.; Lin, Y.; Yao, Z.; Xie, Z.; Wei, Y.; Ning, J.; Cao, Y.; Zhang, Z.; Dong, L.; et al. Swin Transformer V2: Scaling Up
Capacity and Resolution. pp. 12009–12019.

16. Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-attention Mask Transformer for Universal Image Segmenta-
tion. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1280–1289.
ISSN: 2575-7075, https://doi.org/10.1109/CVPR52688.2022.00135.

17. Li, Z.; Wang, Y.; Zhang, N.; Zhang, Y.; Zhao, Z.; Xu, D.; Ben, G.; Gao, Y. Deep Learning-Based Object Detection Techniques for
Remote Sensing Images: A Survey. Remote Sensing 2022, 14, 2385. https://doi.org/10.3390/rs14102385.

18. Yang, X.; Chen, M.; Yu, C.; Huang, H.; Yue, X.; Zhou, B.; Ni, M. WaterSegformer: A lightweight model for water body information
extraction from remote sensing images. IET Image Processing 2023, 17, 862–871. https://doi.org/10.1049/ipr2.12678.

19. Li, M.; Rui, J.; Yang, S.; Liu, Z.; Ren, L.; Ma, L.; Li, Q.; Su, X.; Zuo, X. Method of Building Detection in Optical Remote Sensing
Images Based on SegFormer. Sensors 2023, 23, 1258. https://doi.org/10.3390/s23031258.

20. Lin, X.; Cheng, Y.; Chen, G.; Chen, W.; Chen, R.; Gao, D.; Zhang, Y.; Wu, Y. Semantic Segmentation of China’s Coastal Wetlands
Based on Sentinel-2 and Segformer. Remote Sensing 2023, 15, 3714. https://doi.org/10.3390/rs15153714.

21. Ma, T.; Zhou, X.; Xi, R.; Yang, J.; Zhang, J.; Li, F. A Semi-supervised Road Segmentation Method for Remote Sensing Image Based
on SegFormer. In Proceedings of the Artificial Intelligence and Robotics; Yang, S.; Lu, H., Eds., Singapore, 2022; Communications
in Computer and Information Science, pp. 189–201. https://doi.org/10.1007/978-981-19-7943-9_16.

https://doi.org/10.1038/s43247-023-00805-6
https://doi.org/10.1038/s41597-022-01547-4
https://doi.org/10.1038/s41893-021-00811-6
https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.3390/rs12142291
https://doi.org/10.3390/app11177914
https://doi.org/10.3390/app11177914
https://doi.org/10.3390/s20236936
https://doi.org/10.1109/CVPR52688.2022.00135
https://doi.org/10.3390/rs14102385
https://doi.org/10.1049/ipr2.12678
https://doi.org/10.3390/s23031258
https://doi.org/10.3390/rs15153714
https://doi.org/10.1007/978-981-19-7943-9_16

	Introduction
	Related Work
	Data

