Machine Learning Strategies for Drug Discovery in AML: Focus on

RUNX1 Bioactivity

Introduction

« RUNXZ1 transcription factor, a critical
gene for hematopoiesis, is highly
prevalent in Acute myeloid leukemia
(AML). Mutations within this gene are
associated with poor patient
outcomes.

* In the current study, we utilized a
machine learning approach based on
guantitative structure-activity
relationships (QSAR) model to
virtually design and predict versatile
inhibitors of RUNX1.

Methods

Data Preprocessing: Bioactivity data for
ID CHEMBL2093862 was retrieved
from the CHEMBL database.

« EDA & Lipinski descriptors: Chemical
Space Analysis and Mann-Whitney U
Test were performed to assess the
drug-likeness of the compounds.

» Descriptor Calculation: PubChem
fingerprints were generated for the
compounds and assigned as the X
variable, while the Y variable was set to
the pIC50 values, representing their
bioactivity.

« Machine Learning Models: Low-
variance features were removed,
followed by an 80/20 train-test split and
application of 41 machine learning
models for analysis.

* Deployment in web app: A machine
learning model was deployed as a web
app using the Streamlit framework.
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Fig: (A) Activity: Inactive (pIC50 < 5), Active (pIC50 > 5)
(B) Molecular Weight: Higher in Active compounds.
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Results

» Tree-based (Decision Tree,
Random Forest) and boosting
(XGBoost) models achieved
superior performance (R? >
0.925).

« The web application predicts
bioactivity, represented by
pIC50 (a measure of inhibitory
concentration at 50%), for
various compounds targeting
RUNX1.

* A web app predicts the
bioactivity (pIC50) of multiple
RUNX1-targeting compounds
using their chemical structure
(SMILES or composition) and
name, achieving ~90%
accuracy through cross-
validation.

 The app is currently available
only locally and needs further
experimental validation.

Conclusion

» This study demonstrates the
potential of machine learning
for early drug discovery. By
analyzing RUNX1-targeting
compounds, the work
highlights the ability of ML to
identify key features for
designing potent drugs against
RUNX1.
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