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Abstract: Stochastic simulation optimization has been proposed by several researchers to optimize 11 

construction operations. Traditionally, explicit averaging is used to estimate the objective functions 12 

of candidate solutions. This is carried out by calculating the average estimates of the objective func- 13 

tions obtained from a number of simulation replications. However, the computation effort increases 14 

as the number of replications and the size of the search space increase. The main objective of this 15 

paper is to study the benefits of using implicit averaging and common random numbers to improve 16 

the quality of the optimum solutions while reducing the computation time. The initial results of this 17 

study showed a 91% reduction in the computation time and 2.6% improvement in the quality of the 18 

optimum solutions. 19 
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 22 

1. Introduction 23 

Project planners are faced with a great challenge in determining the number of re- 24 

sources to use on a construction project. Hence, effective planning of construction projects 25 

is vital to achieve the project objectives. Failing to select the optimal combination of equip- 26 

ment, crews, and project settings can result in prolonged project durations and unneces- 27 

sary cost overrun. Stochastic simulation optimization, which is the combination of sto- 28 

chastic simulation with optimization algorithms, has been proposed by several research- 29 

ers to optimize the construction operations [1-3]. Explicit averaging (EA) is the de facto 30 

method of estimating the objective functions when stochastic simulation is used [4]. This 31 

is done by calculating the average value of the objective functions obtained from a number 32 

of simulation replications. Traditional stochastic simulation optimization frameworks are 33 

limited by the required long computation time to solve the optimization problem and the 34 

large number of simulation replications to obtain an accurate estimate of the objective 35 

functions [5]. In the field of construction management, previous work used parallel com- 36 

puting [6], variance reduction techniques [7], and joint application of the previous two 37 

approaches [5] to over these limitations.  38 

The main objective of this paper is to study the benefits of applying (1) implicit aver- 39 

aging (IA) and (2) implicit averaging with common random numbers (ICRN) in construc- 40 

tion simulation optimization problems. Implicit averaging refers to using a single simu- 41 

lation replication to estimate the objective functions. Common Random Numbers (CRN) 42 

is a variance reduction technique that is used to compare the performance of a simulation 43 

model across different candidate solutions [8]. The concept of CRN is that the decision- 44 

maker wants to compare the performance of the different candidate solutions under the 45 
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same uncertainty conditions so that any improvement in the performance is solely due to 1 

the change in the resource combination. The anticipated benefits of using IA and ICRN 2 

are (1) a reduction in the computation time, (2) an improvement in the quality of optimum 3 

solutions, and (3) an increase in the number of evaluated candidate solutions. The rest of 4 

the paper is organized as follows: Section 2 presents the methods used in this study, Sec- 5 

tion 3 presents the results and discussion, and Section 4 provides conclusions and future 6 

work. 7 

2. Methods 8 

This section presents the proposed simulation optimization framework that can be 9 

used by project planners to enhance decision-making on construction projects. The aim of 10 

the proposed framework is to obtain near-optimum recourse combinations that minimize 11 

the duration and cost of a construction project. It consists of the simulation optimization 12 

and post-optimization analysis modules, as shown in Figure 1.  13 

The simulation optimization module integrates multi-objective optimization algo- 14 

rithm and discrete event simulation to obtain a set of Pareto fronts. The fast messy Genetic 15 

Algorithm (fmGA) [9] is used to search the space of the decision variables and generate 16 

candidate solutions by combining these decision variables. It is worth mentioning that 17 

other optimization algorithms can be used in place of fmGA. This module uses IA and 18 

ICRN when evaluating the generated candidate solutions. Discrete event simulation is 19 

used to estimate the objective functions (i.e., duration and cost) of candidate solutions. 20 

These estimates are used by fmGA to guide its search for near-optimum solutions. The 21 

output of this module is a set of Pareto fronts, which is the preferable outcome of a multi- 22 

objective optimization problem. These Pareto solutions are non-dominated optimum so- 23 

lutions that represent the potential tradeoff among the project objectives.   24 
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Figure 1. Proposed multiobjective stochastic simulation optimization framework. . 26 

An important criterion for the success of the CRN is the synchronization of the ran- 27 

dom numbers. In this paper, CRN are implemented for each stochastic task in the simula- 28 

tion model. To maintain appropriate synchronization among these stochastic tasks, each 29 

task is allocated a separate stream from which random numbers can be generated. Table 30 

1 shows the summary of the algorithm for the simulation optimization module. The pro- 31 

cess starts by generating and storing a random seed number. This stored seed number is 32 

used across all the candidate solutions to proper synchronization and dependency be- 33 

tween them. The fmGA would then generate the initial population. Each generated pop- 34 

ulation would go through the same steps of evaluating the candidate solutions using sto- 35 

chastic simulation, sorting the population, and applying genetic operators to generate a 36 

new population until the termination criterion is met. At that point, the fmGA would re- 37 

turn the top three ranks of Pareto solutions.  38 

The purpose of the second module is to take a deeper look into the top three Pareto 39 

fronts that are obtained from the first module. The reasoning behind that is to ensure that 40 

no non-dominated solutions are left behind in the Pareto fronts of rank 2 and 3. Each so- 41 

lution in the top three ranks is evaluated using a large number of replications (i.e., 1000) 42 
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to obtain sound statistical information of these solutions. Finally, non-dominated sorting 1 

is performed on these solutions to filter out inferior solutions and present the final Pareto 2 

solutions.  3 

Table 1. Summary of simulation optimization module. 4 

1

. 
Generate and store seed number  

2 Initialize population  

3 FOR each generation until termination DO 

4    FOR each solution in a population 

5       Run simulation 

6          Generate streams using seed number 

7       Calculate duration and cost 

8    Sort population and apply genetic operators 

9 RETURN Pareto fronts of ranks 1, 2, and 3 

2.1. Performance Metrics 5 

Three performance metrics are used to measure the performance of the presented 6 

framework. The first metric is the achieved time savings, as shown in Equation 1. It 7 

measures the reduction in computation time of the optimization process that is realized 8 

by using IA or ICRN. 9 

𝑇𝑠 (%) =  
𝑇𝐸𝐴 − 𝑇𝑃𝐹

𝑇𝐸𝐴
× 100 

(1) 

Where Ts is the achieved time savings; TEA and TPF are the time required to solve the 10 

optimization problem using EA and the presented framework, respectively.  11 

The second metric is the change in the hypervolume indicator as shown in Equation 12 

2. This metric is used to compare the performance of multiobjective evolutionary algo- 13 

rithms [10]. Using this indicator, the area of the search space dominated by the Pareto 14 

front is calculated [11]. When comparing multiple Pareto fronts, the one with the largest 15 

area (i.e., hypervolume indicator) is the superior Pareto fronts since it considers the front's 16 

optimality and diversity [12].  17 
∆𝐻𝑉 (%)

=
𝐻𝑉𝐸𝐴 − 𝐻𝐹𝑃𝐹

𝐻𝑉𝐸𝐴

× 100 
(2) 

where ∆HV is the percentage difference in the hypervolume indicator, HVEA is the 18 

hypervolume indicator using EA, and HVPF is the hypervolume indicator using the pro- 19 

posed framework. 20 

The third metric is the change in the number of evaluated candidate solutions over a 21 

finite period of time. This metric can be used to measure the confidence level in the opti- 22 

mality of the Pareto solutions.  23 
∆𝐸𝑆 (%)

=
𝐸𝑆𝐸𝐴 − 𝐸𝑆𝑃𝐹

𝐸𝑆𝐸𝐴

× 100 
(2) 

where ∆ES is the percentage difference in the number of evaluated candidate solu- 24 

tions, ESEA and ESPF are the number of evaluated candidate solutions representing EA and 25 

the proposed framework.  26 

2.2. Implementation 27 
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The simulation optimization module is implemented by embedding STROBOSCOPE 1 

simulation software [13] within Darwin optimization framework [14], which utilizes 2 

fmGA as shown in Figure 2. The integration of these two tools is done in Microsoft Visual 3 

C#. The minimum, maximum, and increment values for each decision variable is stored 4 

in a text file. The optimization tool accesses the text file and generates the candidate solu- 5 

tions using the specified boundaries. The developed code would then modify values of 6 

the decision variables within the simulation source code. Then, it starts the simulation tool 7 

and creates a new model with the modified source code. Next, it runs the simulation and 8 

extracts the project duration and cost. Finally, the code exports the project duration and 9 

cost to the optimization tool. At the termination of the optimization, the Pareto solutions 10 

are output into a text file. 11 

To perform the post-optimization analysis, Microsoft Excel via VBA is to used to re- 12 

evaluate the Pareto solutions. This is done in a similar manner as in the simulation opti- 13 

mization module. Once the re-evaluation is completed, a non-dominated sorting is per- 14 

formed to present the final Pareto front. 15 

. 16 

Figure 2. Implementation of the simulation optimization module. 17 

3. Results and Discussion 18 

The study used in this paper consists of constructing a precast box girder bridge us- 19 

ing a full-span launching gantry method. The developed simulation model and study de- 20 

tails can be found in (Mawlana and Hammad, 2019). The bridge consists of 35 spans with 21 

identical spans of length 25 m. This construction method has three phases: (1) casting of 22 

the span at the casting yard, (2) delivering the spans to the construction site, and (3) erect- 23 

ing the spans. The study considers 13 decision variables related to the settings of the cast- 24 

ing yard and the transportation of box girders. 25 

To evaluate the effectiveness of the presented framework. Two experiments are car- 26 

ried out. Both experiments were run on an Intel Core i7, Quad-core processor, 3.4 GHz 27 

machine with 16 GB RAM. The first experiment compares the performance of EA, IA, and 28 

ICRN methods when used to evaluate a fixed number of candidate solutions (i.e., 100,000). 29 

The project duration and cost using EA were calculated by averaging 100 simulation rep- 30 

lications, whereas, 1 simulation replication is used for IA and ICRN. At the end of the 31 

optimization, the candidate solutions presented in the best three Pareto fronts of each 32 
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method were re-evaluated using 1,000 replications to obtain accurate statistical infor- 1 

mation. 2 

Figure 3(a) shows the final Pareto fronts obtained from the first experiment. The Pa- 3 

reto fronts provided a non-dominated tradeoff between the project duration cost. Exam- 4 

ining the Pareto fronts, it can be noticed that all three methods were able to generate very 5 

close Pareto fronts. Table 2 summarizes the results of both experiments. It took 7.20 hours 6 

to evaluate 100,000 candidate solutions using EA and 0.65 hours for IA and ICRN, which 7 

resulted in an average time saving of 91%. Additionally, the ICRN approach achieved a 8 

2.6% and 3.6% improvement in the quality of optimum solutions, as measured by the hy- 9 

pervolume indicator, over EA and IA, respectively.   10 

The second experiment compares the performance of three methods when optimiza- 11 

tion is run for a fixed period of time (i.e., 7.20 hours). Since IA and ICRN approaches are 12 

faster than EA, they are expected to evaluate far more candidate solutions than EA. Figure 13 

3(b) shows the final Pareto fronts obtained in the second experiment. The total number of 14 

evaluated candidate solutions by ICRN and IA approaches is 751,415, 645% increase over 15 

the EA approach. ICRN and IA Pareto fronts achieved 4.9% and 2.9% improvement in the 16 

hypervolume indicator, respectively.  17 

. 

 

(a) (b) 

Figure 3. Pareto fronts obtained for EA, IA, and ICRN: (a) Pareto fronts of 1st experiment; (b) Pareto 18 
fronts of 2nd experiment. 19 

Table 2. Summary of the study results. 20 

Experiment. Evaluation Method n ES ES (%) HV HV (%) T (hours) T(%) 

1 

Explicit 100 100,000 - 9,751 - 7.20 - 

Implicit 1 100,000 0 9,668 -0.8 0.65 91 

Implicit + CRN 1 100,000 0 10,018 2.6 0.65 91 

2 
Implicit 1 751,415 651 10,035 2.9 7.20 0 

Implicit + CRN 1 751,415 651 10,232 4.9 7.20 0 

n = number of replications; ES = number of evaluated solutions; HV = hypervolume indicator; T = computation time 

4. Conclusions 21 

One of the major drawbacks of the current stochastic simulation optimization frame- 22 

works is that they require several simulation replications to evaluate the fitness of the 23 
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candidate solutions generated by the optimization algorithm. This, in turn, would in- 1 

crease the required time and/or computational effort to solve the optimization problem. 2 

To overcome this issue, this paper studied using implicit and joint application of implicit 3 

averaging and common random numbers to improve the performance of simulation op- 4 

timization frameworks.  5 

A box girder bridge project is used to demonstrate the benefits of the presented 6 

framework. Based on the study results, the framework reduced the computation time by 7 

91% and improved the quality of optimum solutions by 2.6% when the number of evalu- 8 

ated candidate solutions was fixed. Additionally, the study showed that the presented 9 

framework improved the optimization algorithm's performance by 4.9% and increased 10 

the confidence by more than 650%. The initial results of the presented framework showed 11 

promise in improving the efficiency and effectiveness of simulation optimization frame- 12 

works. For future work, the authors will further investigate the benefits of applying the 13 

presented framework to other construction simulation optimization problems. 14 
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