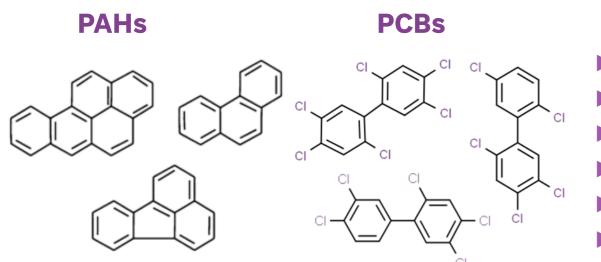


The 1st International Electronic **Conference on Toxics** 20-22 March 2024 | Online

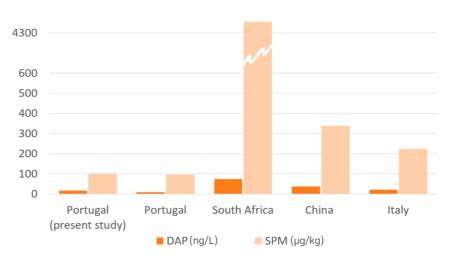

Determination and Risk Assessment of PAHs and PCBs in Seawater and Blue Mussels from Vila-do-Conde, Portugal

Ana Margarida Esteves^{1,2}, Rodrigo Alves^{1,2}, Eduardo Rocha^{1,2}, Maria João Rocha^{1,2}

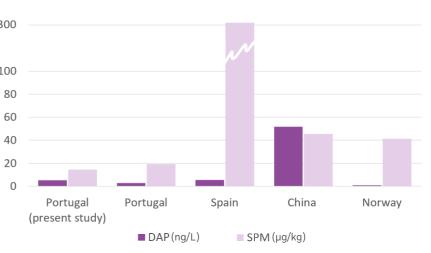
¹ Laboratory of Histology and Embryology, Department of Microscopy, ICBAS – School of Medicine and Biomedical Sciences, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

² Team of Animal Morphology and Toxicology, CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.

INTRODUCTION



- Resistant to degradation
- Long half-lives
- Volatile and easily transportable
- High affinity to lipidic tissues
- Bioaccumulate & Biomagnificate
- Toxic



RESULTS AND DISCUSSION

PAHs – Concentrations

PCBs – Concentrations

Mytilus sp. Sensitive but resilient Accumulates pollutants **Reflects local conditions** Wide distribution Easy sampling

Sentinel species

GOALS

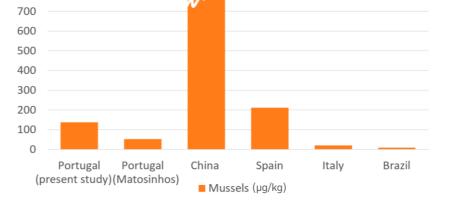
Absorption of **PAHs and PCBs** Bioconcentration from a polluted Biomagnification environment

Toxicity Carcinogenicity

- Carcinogenic, mutagenic, teratogenic, neurotoxic, endocrine disruptors
- Compromise development, growth, behaviour, reproduction
- Damage can continue to affect future generations
- Complex mixture of pollutants \rightarrow Toxicity potentiation

Provide data and verify fluctuation patterns 1

- Investigate potential sources 2
- Evaluate the environmental and health risks 3


METHODS

Water Samples (2 L)

2017 - 2021

One harvest per season (n = 12)

PAHs – Emissions

Pyrogenic → Biomass combustion \rightarrow High weight PAHs

> **Petrogenic** → fossil fuels \rightarrow Low weight PAHs

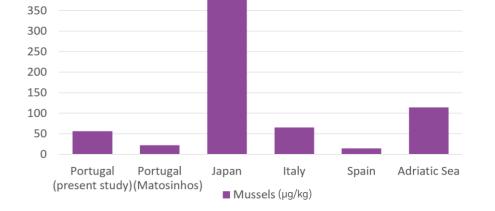
> > risk

Seawater

- > DAP Petrogenic
- SPM Pyrogenic

Mussels

- 2018, 2019 and 2021: **Petrogenic**
- 2020: Pyrogenic


PAHs – Risk assessment

Low - Moderate environmental

Estimated Daily Intake Target Hazard Quotient Carcinogenic Risk

High mollusc consumption

\uparrow Cl groups \blacktriangleright \uparrow toxicity + \uparrow resistance

Seawater

DAP and SPM - PCBs with 5 and 6 Cl groups

Mussels

PCBs with 6 Cl

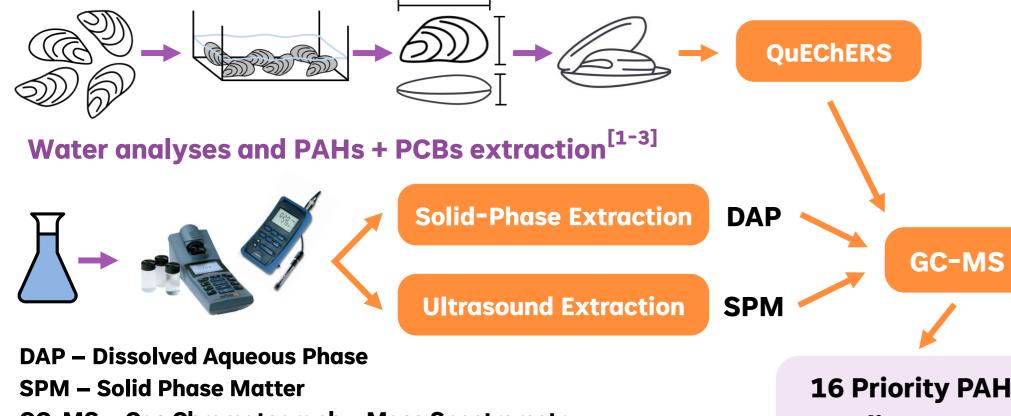
PCBs – Risk assessment

- **Animal Sampling** 2017 - 2021
- One harvest per season (n = 12)

Portuguese population vulnerable to **cancer** development

sampling sites !!

CONCLUSIONS


- Anthropogenic activities \rightarrow are the main sources of PAHs;
- PCBs persist in the environment;
- Environmental risk \rightarrow Moderate level;
- High levels of contaminants in mussels;
- Maximum legal limits are exceeded \rightarrow cancer development risk
- \blacktriangleright High daily intake rate of bivalves \rightarrow Portuguese population especially vulnerable;
- Monitorization and extended research to the entire Portuguese coast is recommended

REFERENCES

[1] Madureira et al. (2014). Environ Sci Pollut Res, 21: 1528-1540 [2] Madureira et al. (2014). Environ Sci Pollut Res, 21: 6089-6098 [3] Rocha et al. (2017). Environ Monit Assess, 189, 1-14. [4] Commission Regulation (EU) no. 2023/915. OJEU, L 215:4-8

https://sciforum.net/event/IECTO2024

Mussel biometry and PAHs + PCBs extraction^[1-3]

GC-MS – Gas Chromatography-Mass Spectrometry

16 Priority PAHs 7 Indicator PCBs