Oxidative Potential as a Health Risk Estimation of Ambient PM_{2.5} in Chiang Mai City, Northern Thailand: A Study in 2021

<u>Teetawat Santijitpakdee</u>^{1,2,3}, Tippawan Prapamontol^{1*}, Pitakchon Ponsawansong¹, Sawaeng Kawichai¹, Nichakorn Taejajai¹, Wenhuai Song³, Fang Cao³, Yan-lin Zhang^{3**}

¹ Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand.

²School of Health Sciences Research (SHSR), Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand.

³School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Atmospheric Environment Center, Joint Laboratory for International Cooperation on Climate and Environmental Change, Ministry of Education (ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, China

E-mails: teetawat_san@cmu.ac.th; tippawan.prapamontol@cmu.ac.th; dryanlinzhang@outlook.com

Abstracts

This study aims to ascertain the oxidative potential (OP) of $PM_{2.5}$ in Chiang Mai (CM) City, Northern Thailand, which suffers from severe air pollution involving health risk. The dithiothreitol assay (DTT) was used to analyze the OP of 53 samples of $PM_{2.5}$ filters collected between January and April 2021 using a medium-volume air sampler with a flow rate of 100 L/minute for 24 hours every other day. We analyzed components of $PM_{2.5}$ including carbonaceous content [i.e., organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC)], eight water-soluble inorganic ions (WSIIs), and twenty-one metal components.

The study found that OP^{DTTv} (volume-normalized DTT activity) in PM_{2.5} had an average of 0.13 ± 0.01 nmol/min/m³ and OP^{DTTm} (mass-normalized DTT activity) of 2.44 ± 0.24 pmol/min/µg. OP^{DTTv} was moderately correlated with carbonaceous components (r = 0.44 - 0.50, P < 0.01), WSIIs components (r = 0.41 - 0.55, P < 0.01), and metal components (r = 0.40 - 0.48, P < 0.01). There is no significant positive correlation between such PM_{2.5} components and the OP^{DTTm} found in this study. Interestingly, moderate positive correlations were observed between OP^{DTTv} and potassium (K, K⁺) and WSOC, indicating that these sources were primarily derived from biomass combustion tracers and secondary organic aerosols, respectively. Moderate positive correlations were also observed between OP^{DTTv} and secondary ions (NO₃⁻, NH₄⁺). The redox-active nature of NO₃⁻ produced by gases and free radicals led to OP^{DTTv} associations with secondary ions. Furthermore, associations were found between OP^{DTTv} and transition metals such as copper (Cu) and iron (Fe), which contribute to generating oxidative stress.

Our study showed that the OP of PM_{2.5} is dominated by carbonaceous components from burning biomass, secondary organic aerosols, and transition metals. Further OP studies of other chemical components in PM_{2.5} should also be explored to estimate more potential health risks.

Keywords: Oxidative potential; PM2.5 components; Health risk; Chiang Mai City