Extracellular Signal-Mediated Activation of IRE1 Promotes TH17 Responses

Dandan Wu¹, Xing Zhang², Kourtney M. Zimmerly¹, Ruoning Wang¹, Amanda Livingston¹, Takao Iwawaki³, Ashok Kumar⁴, Xiang Wu^{1,5}, Matthew Campen⁶, Michael A. Mandell¹, Meilian Liu², and Xuexian O. Yang^{1,*}

¹Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA

²Department of Biochemistry and Molecular Biology, University of New Mexico School of

Medicine, Albuquerque, NM 87131, USA

³Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan

⁴Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA

⁵Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine,

Central South University, Changsha, China

⁶Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy,

Albuquerque, NM 87131, USA

*Correspondence: xyang@salud.unm.edu (X.O.Y.)

Key words: IRE1, UPR, JAK2, TH17 cell

Abstract

Introduction

Heightened unfolded protein responses (UPRs) are associated with many TH17-driven inflammatory diseases. However, how UPRs participate in the deregulation of TH17 cells remains elusive.

Objective

We investigated the role of the UPR sensor IRE1 in TH17 cell function and the underlying mechanism.

Methods

Whether and how extracellular stimuli lead to IRE1 phosphorylation was explored by using flow cytometry, western blot, confocal microscopy, in vitro phosphorylation, and coimmunoprecipitation. T cell-specific *Ern1* (encoding IRE1)-deficient cells were used to examine the effects of IRE1 on TH17 responses.

Results

The UPR sensor IRE1 is highly expressed in TH17 cells relative to naïve CD4⁺ T cells. Signals of cytokines (e.g. IL-23 and IL-6) and co-stimulation induce the IRE1-XBP1s axis. Among those, IL-23 activates IRE1 in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by both human and mouse TH17 cells. *Ern1* (encoding IRE1)-deficiency decreases the expression of ER stress factors and impairs the differentiation and cytokine secretion of TH17 cells.

Conclusion

Our data indicate that IRE1, noncanonically activated by cytokine signals, promotes the secretory function of TH17 cells. The findings provide a novel insight into the fundamental understanding of UPRs in TH17-mediated diseases.

Acknowledgments

This work was supported in part by NIH grants HL148337, AI116772, and AI142200 (X.O.Y.), DK110439 (M.L.), and GM130422 (M.C.).