Conference on Biomimetics

5-17 May 2024 I Online

Mitigating Strategy for Urban Heat Island: Biomimicry Approach Case of Delhi

Anushka Dhankhar 1, Anway Kundu 2, Neha Basumatary 3, Sanika Khune 4, Amit Kumar Jaglan 5*

- 1 Department of Architecture, School of Planning and Architecture, New Delhi -110002, India; thedoer03@gmail.com
- 2 Department of Architecture, School of Planning and Architecture, New Delhi -110002, India; anwaytunak291102@gmail.com
- 3 Department of Architecture, School of Planning and Architecture, New Delhi -110002, India; nehabasumatary123@gmail.com
 - 4 Department of Architecture, School of Planning and Architecture, New Delhi -110002, India; sanikakhune11@gmail.com
- 5* Department of Architecture, School of Planning and Architecture, New Delhi -110002, India; footprint1109@gmail.com

INTRODUCTION & AIM

The increasing population has raised the demand of large-scale urbanisation. This has given rise to a phenomenon known as Urban Heat Island (UHI), which refers to higher surface or air temperatures in the city centres as compared to the surrounding countryside. UHI is characterised by the local climatic conditions, urban fabric, materials and surfaces. Architects (2014) reported that for every 0.6 °C increase in summertime temperature, peak hour electricity demand rises 1.5 to 2% for Delhi. Mortality for populations in the European Union has been estimated to increase by 1 to 4% for each degree increase of temperature above a (locally specific) cut-off point (WHO 2011). But amidst the scorching streets and sweltering buildings, nature offers a wealth of ingenious solutions we can mimic to cool our cities down. Bioinspiration, also known as biomimicry, is a creative problem-solving approach that draws inspiration from nature to design and innovate in various fields. It provides not only functional but also aesthetic solutions.

Some of the bio-inspired processes include implementing high-reflectance materials, akin to the Saharan ant skin, mimicking the colour and reflectance differences found in zebra skin for differential heating, and incorporating vegetation and water features, inspired by evapo-transpiration in human skins.

These biomimetic principles find applications in various building elements. Kinetic facades dynamically protect from the sun. Use of high reflectance materials reduces the albedo. Incorporation of high and low reflectance materials of different colours induces convection currents through differential heating. Interspersed green walls and water features and porous, water retaining materials provide localized evaporative cooling.

This research explores the application of biomimetic principles, such as bioinspired materials and green infrastructure, to create sustainable urban spaces that reduce UHI effects. The study examines the potential of biomimicry in promoting thermal comfort, energy efficiency, and overall resilience in urban landscapes.

METHOD

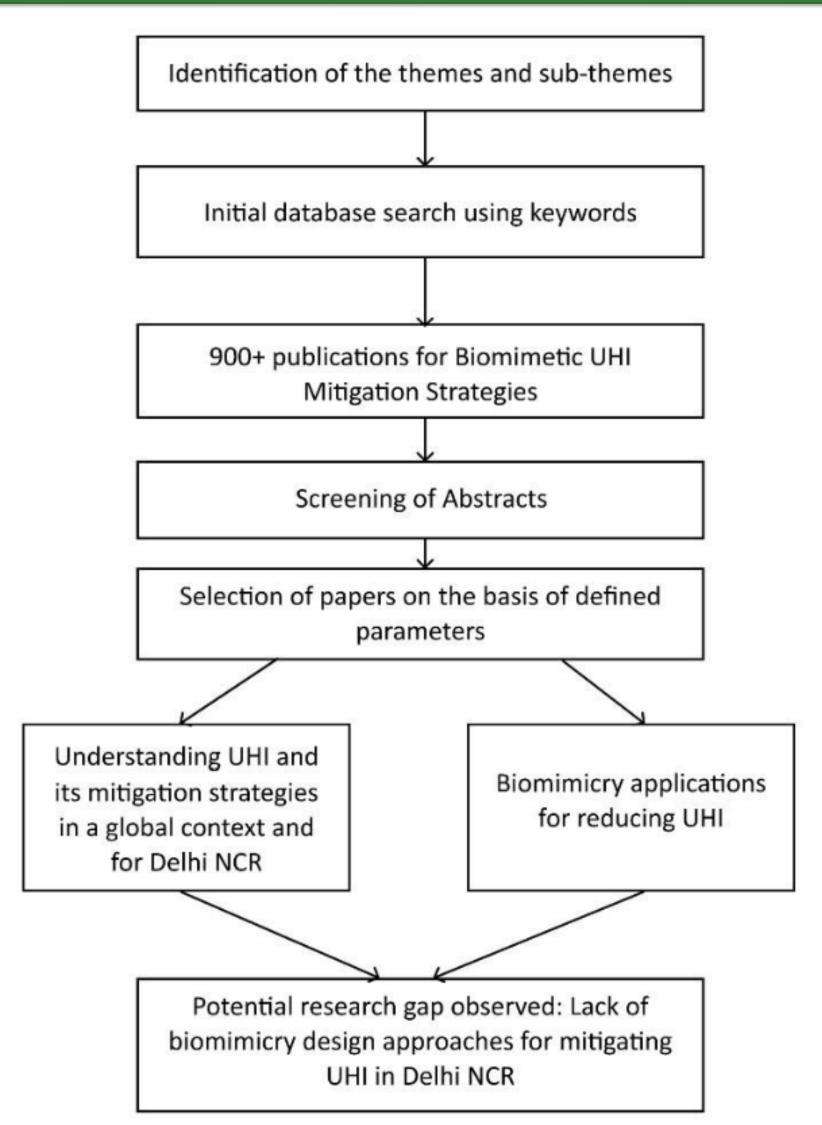


Figure 1. **Methodology**

The paper will examine the impact of building design on the impact of urban heat islands (UHI) and explore biomimicry as a mitigation strategy. To conduct extensive literature searches using academic databases such as ScienceDirect, Scopus, and Web of Science. Search terms include "building design," "urban heat island," "biomimicry," "passive cooling," and "urban sustainability."

RESULTS & DISCUSSION

	Principles	Description	Secondary Principles
1	Resource (material	This is skilfully and	using multifunctional design
	and energy) efficient	conservatively taking	using low energy processes (minimise energy
		advantage of resources	consumption by reducing requisite temperatures,
		and opportunities.	pressures, and/or time for reactions)
			recycling all materials
			Fitting form to function (select shape or pattern based on
			need).
2	Evolve to survive	This is the continuous	replicating strategies that work (repeat successful
		incorporation and	approaches)
		embodying of information	integrating the unexpected (incorporate mistakes in ways
		to ensure enduring	that can lead to new forms and functions) Exchange and
		performance.	alter information to create new options.
3	Adapt to changing	This is appropriately	maintaining integrity through self-renewal
	conditions	responding to dynamic	embodying resilience through variation
		contexts	redundancy
			decentralisation incorporating diversity
4	Integrate developm	This entails optimally	combining modular and nested components
	ent with growth	investing and engaging in	building from the bottom up
		strategies that promote	self-organising
		both development and	
		growth.	
5	_	This is fitting into and	using readily available materials
	and responsive	integrating with the	Use of solar/renewable energy.
		surrounding environment.	cultivating cooperative relationships
			leveraging cyclic processes
_			using feedback loops
6	Using life friendly	This entails the use of	building selectively with a small subset of elements
	chemistry	chemistry that supports	breaking down products into benign constituents
		life processes.	Doing chemistry in water (use water as solvent).

Table: 1 The major principles of Biomimicry,

Source: (Abd El-Rahman et al. 2020)

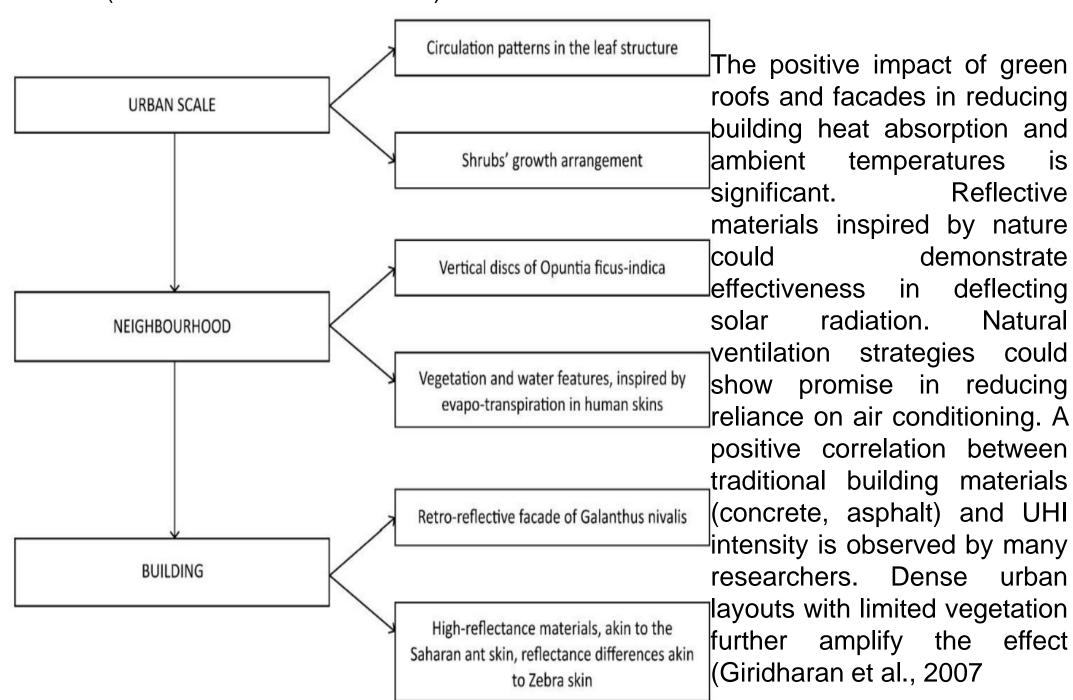


Figure 2: Summary of strategies proposed for NCR

CONCLUSION

Large-scale urbanization has led to an increase in LST, contributing to the formation of UHI. It is characterized by the local climatic conditions, built-forms, materials and surfaces. Various mitigation strategies have been adopted across the world, biomimicry being one of the emerging solutions. However, it has not yet been applied in the Indian context. This study presents a set of strategies that can be applied at various levels of planning and designing the future cities

FUTURE WORK / REFERENCES

The cost-effectiveness of biomimicry in different climates and building types should be researched. Biomimicry solutions may incur initial cost challenges compared to conventional materials. However, long-term savings in reduced energy use for cooling can be figured out through life cycle analysis. Insights into the practical applications of biomimicry in the built environment should be included in policy making.

- 1. Arumugam, G., Abidin, S. N. Z., Kusumo, C. M. L., & Jain, A. (2023). Teaching Nature and Architecture: Student-Led Account of Biomimicry Innovations in the Tropics. *Biomimetics*, 8(1). https://doi.org/10.3390/biomimetics8010013
- Martino, B. (n.d.). Biomimicry in Building Architecture: How Effectively does Theoretical Biomimetics Translate into Industry-Standard Construction Practice?
 Elmeligy, D. A. (2016). Biomimicry for ecologically sustainable design in architecture: a proposed methodological study. Eco-Architecture VI: Harmonisation between Architecture and Nature, 1, 45–57. https://doi.org/10.2495/arc160051