The 3rd International Electronic Conference on Processes

29-31 May 2024 | Online

Evaluation of Axial Flow Impeller Fabrication Process by Wire Arc Additive Manufacturing and Machining

Shinichiro EJIRI, PMP, Nikkiso Co., Ltd., Tokyo, Japan

shinichiro.ejiri@nikkiso.co.jp

INTRODUCTION & AIM

How to design a sustainable society?

One solution is to build an eco-friendly energy lifecycle.

Research Target: Turbomachinery fabrication

Is tradition fabrication process most eco-friendly?

The answer is case by case.

However, applying additive manufacturing to parts of the fabrication process may be one solution to build an even more eco-friendly system.

Evaluate to fabrication process include
Wire Arc Additive manufacturing (WAAM)
for an impeller, a key component of turbomachinery.

METHOD

Fabrication Process^[1]

WAAM

Machining

Test Model: Axial Flow Impeller

Number of blades		4
Tip diameter	[mm]	125.3
Hub diameter	[mm]	51
Hub length	[mm]	40
Material		SST

RESULTS & DISCUSSION

Fabrication Result

Evaluation of Fabrication

Additional design axial flow impeller Change number of blades

Comparison between Include WAAM & Tradition Method Fabrication process include WAAM has an advantage with chip removal volume, but in terms of fabrication time, it depends on impeller shape.

NOTE: Tradition Method is machining from round bar.

CONCLUSION

Fabrication process include WAAM are more ecofriendly systems than traditional fabrication process.

FUTURE WORK

To further clarify the industrial advantages of WAAM, a study will be conducted on the fabrication process for difficult-tomachine materials.

REFERENCES

[1] S. Ejiri International Journal of Fluid Machinery and Systems, 2023, 16-2, pp.184-191.