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Abstract: In recent years, machine learning models have emerged as potent tools for prediction 

studies, particularly when dealing with sequential data. This research delves into the impact of Con-

volutional Long Short-Term Memory (Conv-LSTM) model parameters on the accuracy of predic-

tions using Normalized Differential Salinity Index (NDSI-salinity) time series. Indeed, Landsat-8 

satellite images of Tangier-Morocco collected between 2015 and 2022, have been used to compute 

NDSI-salinity time series dataset, forming the foundation for evaluating prediction accuracy. In this 

study, Conv-LSTM model was configured with three pivotal parameters: i) the number of “filters” 

in the main layer, ii) the number of “neurons” in the fully connected (dense) layer, and iii) the num-

ber of training “epochs”. The NDSI-salinity time series data were employed to train and evaluate 

the model, with prediction accuracy assessed using the coefficient of determination (R2) metric. The 

results uncover substantial insights into the relationship between Conv-LSTM model parameters 

and prediction accuracy for NDSI-salinity analysis. When considering a high number of epochs, the 

prediction accuracy remained relatively consistent at 97% across varying values of filters and neu-

rons. In the context of medium number of epochs, the accuracy was influenced by the number of 

filters in the main layer. Specifically, when filters numbered between 10 and 100, accuracy remained 

below 60%. However, with a rise in filter count, accuracy exhibited an upward trend, ultimately 

plateauing at 96%. In contrast, for a low epochs count, the initial accuracy was negative. However, 

this was addressed by introducing an extensive number of filters in the main layer, reaching up to 

10,000. The infusion of this high filter count yielded positive accuracy outcomes reaching more than 

60%. 

Keywords: Convolutional Long Short-Term Memory, Accuracy, Normalized Differential Salinity 

Index, Landsat-8 

 

1. Introduction 

Since the advent of data science with the appearance of deep learning, time series 

analysis has been employed to forecast and identify future patterns and trends along with 

monitoring and detecting land cover changes [1]. A wide range of models is utilized re-

garding time series forecasting, which includes statistical methods such as automatic re-

gression models [2], and others based on machine learning methodologies such as Artifi-

cial Neural Network (ANN), Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN) [3], and Long Short-Term Memory Network (LSTM) [4]. 

Time series forecasting stands as an essential tool in modern data science and deci-

sion-making, having the ability to display valuable information from past data and guide 

to decisive actions for the future. Simultaneously, at the intersection of technology and 

Citation: To be added by editorial 

staff during production. 

Academic Editor: Firstname Last-

name 

Published: date 

 

Copyright: ©  2023 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Environ. Sci. Proc. 2023, 5, x FOR PEER REVIEW 2 of 4 
 

 

data, there is a remarkable increase in the capacity to enhance the accuracy of time series 

forecasting [5]. Thus, advanced machine learning categories, such as deep learning mod-

els, have contributed to improve forecasting accuracy, by enabling complicated patterns 

extraction from data sequences, even those with complex spatiotemporal dependencies. 

Moreover, combining geospatial information, drawn from satellites, with time series fore-

casting improves environmental, urban, and natural systems evolution understanding. 

This combination helps in addressing critical challenges, such as climate change monitor-

ing, disaster prediction, and urban planning, with unprecedented precision. 

This research examines the impact of Convolutional Long Short-Term Memory 

(Conv-LSTM) model parameters on prediction accuracy using Normalized Differential 

Salinity Index (NDSI-salinity) time series. In fact, Conv-LSTM model architecture consti-

tutes an evolution of Long Short-Term Memory (LSTM) model, engineered to capture 

both spatial and temporal dependencies in sequences [6]. Unlike traditional LSTMs, Conv-

LSTMs embrace spatial structure of input data by coupling LSTM units with convolu-

tional layers. This synergistic design allows Conv-LSTM to extract and integrate features 

across both time and space, making them adept at analyzing complex time series data 

with spatial correlations, such as satellite images or environmental measurements. Ac-

cordingly, NDSI-salinity time series was constructed using Landsat-8 satellite imagery, 

covering Tangier region in Morocco from 2015 to 2022. Within each year, a set of four 

images corresponding to the different seasons (i.e., winter, spring, summer, and autumn) 

was systematically selected. Consequently, the computed NDSI-salinity time series was 

employed as input dataset in order to conduct a detailed evaluation of forecast accuracy 

when varying Conv-LSTM parameterization. 

The upcoming section presents materials and methods, which include study area and 

utilized satellite data, as well as an introduction to NDSI-salinity index. Additionally, 

Conv-LSTM model configuration are presented, and parameter adjustment is explained. 

Next, the results are discussed, particularly in terms of forecasting accuracy comparison 

across three scenarios: low numbers of epochs, medium numbers of epochs, and high 

numbers of epochs. 

2. Materials and Methods 

2.1. Study Area 

This research centers on ecologically diverse region of Tangier, located in northern 

Morocco in Tangier-Tetouan-Al Hoceima prefecture (Figure 1). Geographically, Tangier 

extends to 05°48′W in longitude and 35°46′N in latitude. Situated on west Mediterranean 

Sea and east Atlantic Ocean, this region presents a harmonious convergence of coastal, 

urban, and natural landscapes within its expansive 138.83 square kilometers. This region 

contains a variety of soil types. For instance, coastal areas of Tangier predominantly fea-

ture sandy soils, while soils encircling Rif mountains, with their diverse elevations, exhibit 

varying compositions. Additionally, urban soils, shaped by the forces of urbanization and 

construction activities, display various characteristics depending upon different construc-

tion materials and land utilization. 
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Figure 1. Situation map of the study area. 

2.2. Data collection 

The used data was collected from Landsat-8 satellite, launched by NASA in order to 

extends the legacy of Earth observation missions initiated by previous Landsat satellites. 

This initiative has resulted in the accumulation of an extensive satellite imagery repository, 

widely employed in diverse and influential studies across various domains. In this re-

search, Landsat-8 Collection 2 (C2) Level 2 Science Products (L2SP) data were utilized 

(Table 1), with level-3 processing, involving calibration and atmospheric correction pro-

cedures executed using the Land Surface Reflectance Code (LaRSC) algorithm. Access to 

the product dataset is available via the USGS Earthdata platform [7]. 

Table 1. Landsat-8 spectral band characteristics used in this study. 

Band number Name Wavelength (µm) 
Spectral resolu-

tion (m) 

Temporal resolu-

tion 

Band4 Red 0.64-0.67 
30 16 days 

Band5 Near Infrared  0.85-0.88 

In this study, four images for each year were selected, each representing one of the 

four seasons (Winter, Spring, Summer, and Autumn) (Table 2). 

Table 2. Image dates of Landsat-8 satellite used in the analysis of studied region. 

Seasons Image dates (dd/mm/yy) 

Winter 03/01/15 31/01/16 17/01/17 

07/04/17 

11/01/18 

17/04/18 

07/01/19 01/01/20 12/01/21 06/01/22 

Spring 02/04/15 27/04/16 13/04/19 01/05/20 18/04/21 06/05/22 

Summer 07/07/15 09/07/16 19/07/17 06/07/18 18/07/19 04/07/20 07/07/21 10/07/22 

Autumn 09/09/15 27/09/16 30/09/17 24/09/18 27/09/19 22/09/20 02/10/21 27/09/22 

2.3. Normalized Differential Salinity Index (NDSI-salinity) 
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The NDSI-salinity for soil salinity [8], is an index used to estimate soil salinity levels 

using remote sensing data, typically satellite imagery. The primary purpose of NDSI-sa-

linity for soil salinity is to monitor and assess soil salinity levels over large areas. High soil 

salinity can be detrimental to plant growth, affecting crop yields and soil quality. There-

fore, this index is widely used in agricultural management and environmental studies to 

identify areas where soil salinity may be a concern. The NDSI-salinity index is calculated 

using Red and Near-Infrared reflectance [9]. 

NDSIsalinity = (Band4-Band5) / (Band4+Band5) (1) 

After computing NDSI-based salinity index using the aforementioned formula, we 

derived an average NDSI-salinity value from each image, and subsequently we con-

structed a time series. Figure 2 provided in this study illustrates the temporal variation of 

these average NDSI-salinity values from 2015 to 2022. 

 

Figure 2. Temporal variation of average NDSI-salinity. W: Winter, Sp: Spring, S: Summer, and A: 

Autumn. 

2.4. Methodology 

2.4.1. Conv-LSTM Model Configuration 

The model was developed using essential Python libraries, including NumPy [10], 

Pandas [11], and Keras [12]. To begin, the average NDSI-salinity time series data for fore-

casting was imported using the Pandas library. Then, data preprocessing was conducted, 

involving data cleaning and normalization. Following this preprocessing step, the data 

was divided into training and testing sets, using 60% of dataset for model training and the 

remaining 40% for model testing. Typically, the training set is utilized to train the Conv-

LSTM model, while the testing set is employed to assess the model's performance. The 

Conv-LSTM model was constructed using the Keras library, consisting of two layers. Each 

layer is defined by the number of filters in the main layer and the number of neurons in 

the fully connected (dense) layer. For model compilation, the Mean Squared Error (MSE) 

was chosen as the loss function, and the "adam" optimizer was applied. During the train-

ing of the Conv-LSTM model, specifying the number of training epochs was a crucial step. 

Finally, the performance of the Conv-LSTM model was assessed using the coefficient of 

determination (R2) (Figure 3). The formula for computing R2 involves comparing the ac-

tual values in the test dataset with the predicted values generated by our model. 
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Figure 3. Conv-LSTM flowchart. 

2.4.2. Parametrization of Conv-LSTM 

To analyze the impact of critical parameters on the performance of the Conv-LSTM 

model and its predictive accuracy, we configured the model using three key parameters. 

First, the number of filters in the main layer was manipulated to assess its influence on 

the model ability to capture temporal patterns and spatial features. The filter count was 

systematically varied, ranging from 10 to 100 with increments of 10, and from 100 to 1000 

with increments of 100. Next, the number of neurons in the fully connected (dense) layer 

was held constant at a range of 10 to 100 neurons. Finally, we investigated the role of the 

number of training epochs, which dictates the number of iterations the model undergoes 

while learning from the dataset. This parameter was varied across three values: 10, 50, 

and 100, representing low, medium, and high numbers of epochs, respectively. These var-

iations allowed us to explore the model performance under different training scenarios 

and ascertain how each parameter influenced the accuracy of predictions. 

3. Results and Discussion 

The results provide valuable insights into the interaction between Conv-LSTM model 

parameters and the accuracy of NDSI-salinity analysis. In scenarios where a high number 

of epochs (i.e., epochs=100) were employed (Figure 4a), prediction accuracy exhibited re-

markable stability, consistently hovering around 97% regardless of variations in filter 

counts and neuron numbers. This stability suggests that, beyond a certain point, increas-

ing the number of epochs yields diminishing returns in terms of accuracy enhancement. 

On the other hand, in cases with a medium number of epochs (i.e., epochs=50), the ob-

served fluctuations in accuracy were more pronounced (Figure 4b). Notably, accuracy was 

influenced by the number of filters in the main layer. Specifically, when the filter count 

ranged between 10 and 100, accuracy levels remained below 60%. However, with an 

Python libraries Data selection

Data preprocessing:

➢ Cleaning

➢ Normalization

➢ Scaling

Data splitting

Training and testing sets

Con-LSTM model building:

➢ Number of sequence

➢ Number of filter in the main layer

➢ Number of neurons in the fully connected

(Dense) layer

➢ Number of training ‘Epochs’

Model compiling:

➢ Loss function: mean_squared_error (MSE)

➢ Optimizer: ‘adam’

Model evaluation

Coefficient of determination (R2)
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escalation in the filter count, accuracy demonstrated a notable upward trajectory, ulti-

mately reaching a plateau at 96%. Finally, when a low epoch count (i.e., epochs=10) was 

employed, the initial accuracy was in the negative range (Figure 4c). Nevertheless, this 

challenge was effectively addressed by introducing a substantial number of filters in the 

main layer, counting up to 10,000. This infusion of a high filter count yielded positive 

accuracy outcomes exceeding 60%. These findings underscore the compensatory effect of 

a substantial filter count in qualifying the limitations posed by a limited number of train-

ing epochs. 
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(c) 

Figure 4. Forecasting accuracy variations in three scenarios: (a) low number of epochs, (b) medium 

number of epochs, (c) high number of epochs. 

4. Conclusion 

In this study, Convolutional Long Short-Term Memory (Conv-LSTM) model performance was ex-

plored in the context of NDSI-salinity analysis. Employing remote sensing data from Landsat-8, 

impact of three pivotal model parameters was studied: number of filters in the main layer, number 

of neurons in the fully connected (dense) layer, and number of training epochs. The findings of this 

research shed light on the relationship between these parameters and prediction accuracy. Under 

varying conditions, interesting dynamics in model accuracy were observed. As a result, forecasting 

accuracy showed an upward trend, although with different speed. The model rapidly reached sat-

uration in 97% with a high number of epochs (equal to 100) and neurons in dense layer (from 80 to 

100 neurons). On the other hand, achieving saturation in scenarios with a low number of epochs 

(equal to 10) necessitated a substantially higher filter count in main layer (equal to 10,000).  
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