Novel Thiophene-Derived Schiff Base as a Fluorescent Sensor for Highly Sensitive and Selective Relay Recognition of $\mathbf{Z n}^{2+}$ and $\mathbf{F e}^{2+}$ ions

I. Hamzi ${ }^{1,2, *}$, Y. Mered ${ }^{1}$, B. Mostefa-Kara ${ }^{1}$
${ }^{1}$ Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, B.P.119, Tlemcen 13000, Algeria.
${ }^{2}$ Faculté de Médecine, Université de Tlemcen, 12 B P 123 Hamri Ahmed, Tlemcen 13000, Algeria.
*Correspondence: imane.hamzi@univ-tlemcen.dz

Abstract

:

Chemosensors based on Schiff bases are pivotal in environmental and biological applications, serving to identify specific metal ions at trace levels. Despite the distinctive importance of thiophene-based molecules in medicinal contexts, the number of reported chemosensors utilizing these moieties remains limited.

In this study, we present the synthesis and characterization of a novel Schiff base sensor (TBH), derived from thiophene-2-carboxaldehyde and benzil. We investigate its application as a selective relay probe for the detection of Zn^{2+} and Fe^{2+} ions.

The introduction of Zn^{2+} to TBH , resulted in a significant enhancement of fluorescent intensity, attributed to the formation of a $1: 1 \mathrm{TBH}-\mathrm{Zn}^{2+}$ complex, with no response observed for other cations, including $\mathrm{Mg}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Co}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Hg}^{2+}, \mathrm{Sn}^{2+}, \mathrm{La}^{3+}, \mathrm{Ca}^{2+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, and particularly Fe^{2+}. Furthermore, Fe^{2+} induced fluorescence quenching in the $\mathrm{TBH}-\mathrm{Zn}^{2+}$ system, forming a $1: 1 \mathrm{MY}-\mathrm{Fe}^{2+}$ complex. The $\mathrm{TBH}-\mathrm{Zn}^{2+}$ solvento-complex demonstrates potential as a secondary sensor for Fe^{2+} ions. The sensor's signal change is based on the chelation-enhanced fluorescence (CHEF) effect of $\mathrm{TBH}-\mathrm{Zn}^{2+}$, coupled with the inhibition of photoinduced electron transfer (PET).

Moreover, the rapid and selective features of the proposed sensor make it promising for the precise monitoring of Zn^{2+} and Fe^{2+} in biological and environmental research.

Keywords: Schiff-base Derivatives, Thiophene, Fluorescent chemosensor, Ion Detection.

