

The 3rd International Electronic **Conference on Processes** 29-31 May 2024 | Online

Exploring FTIR Absorption Spectra of Agriculturally Applicable Biodegradable Films with Structural Reinforcement

Maria Inês Machado 1, Pamela K.B. Angelo 1, Angela Gonçalves 1, Renan M. Monção 2, Rômulo de Souza 2, Adriana Machado 1

1 Federal University of Cariri

2 Federal University of Piauí

INTRODUCTION & AIM

FTIR (Fourier Transform Infrared Spectroscopy):

- > Analysis is crucial in characterizing biodegradable films produced from food waste.
- > Helps monitor changes in molecular structure during the degradation process.
- \succ Identifying specific chemical bonds and functional groups

RESULTS & DISCUSSION

helps understand mechanical properties, offering crucial data for evaluating the effective biodegradability of films.

study aimed to obtain and characterize This biodegradable films from agro-industry residues prepared from the casting technique.

Raw Material: Sugarcane Fiber

Table	1.	Ingredients	for	the	composition	of	the
biodeg	rad	able film.					

Formulation	Starch (g)	Potassium Sorbate (g)	Glycerol (g)	Sugarcane fiber (g)	Distilled water (mL)
FF	48	3.2	14.4	0	1.60
FCA	48	3.2	14.4	2	1.60

FF: Fiberless Film

FTIR-absorption spectra synthesized Figure 1: of biodegradable films.

Control film without the addition of fiber -Film with the addition of sugarcane fiber in the structure -Source: Author, 2022.

- \succ The broadband at **3336** cm⁻¹ associated with the two samples: stretching of the OH groups present in the starch and water molecule.
- > The band **2926** cm⁻¹ is attributed to the stretching of the **CH** group of the aldehydes present in the polymer matrix.
- \succ band **2850** cm⁻¹ is associated with the spectrum in which the fibers were added to the **C=O** absorption of the esters.
- \succ The band of **1646** cm⁻¹ to the functional group **C=C**.
- \succ The absorption band of **1033** cm⁻¹ associated with the two

FCA: Film with sugarcane fiber

Elaboration of biodegradable film: **Casting technique**

FTIR infrared spectroscopy

samples corresponds to the CO stretch of the esters.

CONCLUSION

- \succ Therefore, this technique allowed the identification of chemical compositions present in the films, such as polymers and additives.
- \geq By applying FTIR, it is possible to assess the quality, stability, and integrity of films, ensuring that they meet the necessary standards for food packaging.

FUTURE WORK / REFERENCES

JARAMILLO, C. M.; GUTIÉRREZ, T. J.; GOYANES, S.; BERNAL, C.; FAMÁ, L. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers, v. 151, p. 150–159, 2016.

https://ecp2024.sciforum.net/