

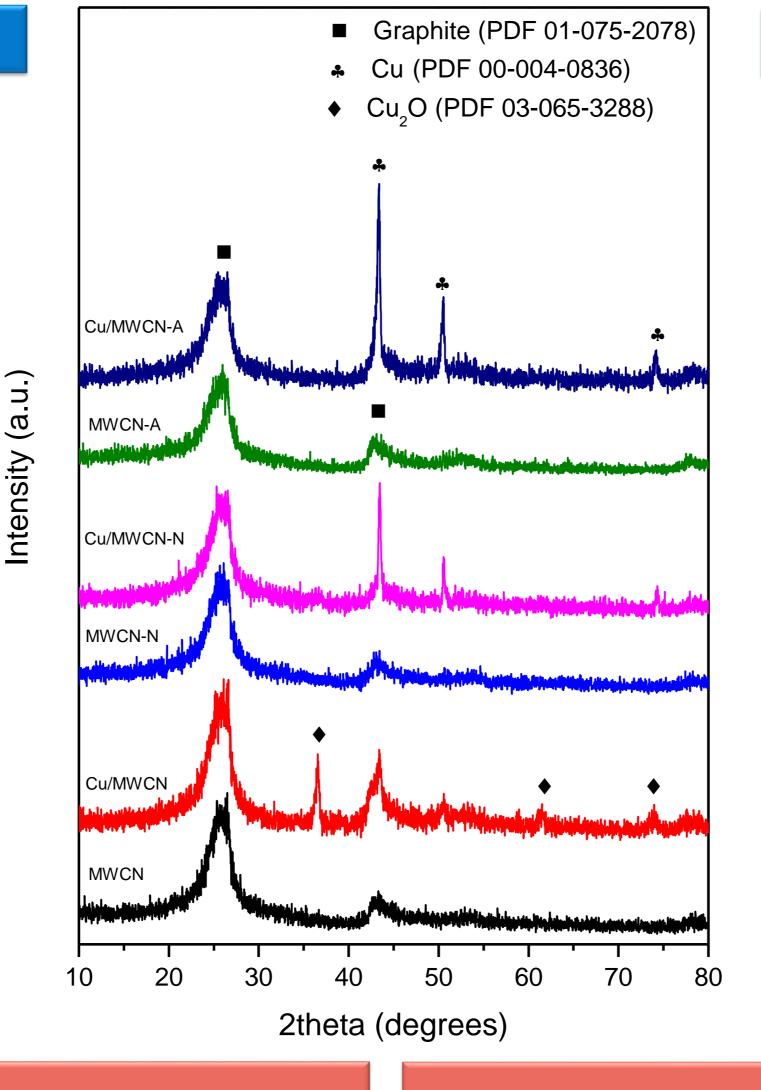
The 3rd International Electronic Conference on Processes

29-31 May 2024 | Online

Functionalization effect of multi-walled carbon nanotubes (MWCNTs) used as supports for Cu-based catalysts

Juan S. Morales Giurato¹, Matías G. Rinaudo^{1,*} and M. Roxana Morales¹

¹ Facultad de Química, Bioquímica y Farmacia, Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis (UNSL), Almirante Brown 1455, 5700 San Luis, Argentina


*Correspondence: matirinaudo@gmail.com

INTRODUCTION & AIM **METHODS** Cu(NO₃)₂ The present work proposes to study the effect of different **Functionalized** functionalization strategies on the properties of multi-walled surface carbon nanotubes (MWCNTs) used as catalyst supports. COOH HNO₃ impregnation MWCN-N Their surface chemistry can be easily modified **Pyrolysis MWCN** Air Flow Cu/MWCN treatment Cu/MWCN-N **MWCN-A** Cu/MWCN-A

RESULTS & DISCUSSION

MWCN Cu/MWCN (243 m² g⁻¹) (215 m² g⁻¹) MWCN-N Cu/MWCN-N (237 m² g⁻¹) (219 m² g⁻¹) MWCN-A Cu/MWCN-A (220 m² g⁻¹) (213 m² g⁻¹)

All SBET values were in the order of pristine MWCN material, with a slight decrease due to thermal treatments and Cu impregnation, as expected

X-ray Diffraction (XRD)

-MWCN-N -MWCN-A

Only graphite carbon signals were observed

- Cu/MWCN: Cu₂O signals were predominant. No incipient Cu^o signals were detected.
- Cu/MWCN-N: Cu° signals were predominant. Smaller metal crystallites could be inferred.
- Cu/MWCN-A: Cu^o signals were also predominant. Larger metal crystallites could be inferred.

Functionalization effect

CONCLUSION

Distinctive physicochemical properties achieved in the MWCNTs supports could be related to the nature of functionalization treatment applied, with their consequent effects on Cu particles size and speciation.

FUTURE WORK

Supports and catalysts are being further characterized and will be evaluated under different conditions of glycerol hydrogenolysis.