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Positive

0 Stillage 48,64% 516 275

1 Transpallet 54% 284 134

2 Forklift 53,25% 62 31

3 Pallet 38,28% 9652 5106

4 Small Carrier 53,25% 1319 841

Table I. LOCO class evaluation using YOLOv4 Tiny

a) Forklift.        b) Pallet. c) Small Carrier.             d) Stillage.     e) Transpallet
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Figure 2. Different classes of the Logistics Objects in Context (LOCO) dataset
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Figure 1. Proposed Model a) Data annotation and separation. b)YOLOv4 Tiny structure with ROS/ 

Darknet integration.  c) Object detection using Bounding Boxes
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Figure 4. YOLOv4 Tiny object detection accuracy of LOCO dataset

• We took advantage of the one-stage detection architecture You Only Look Once 

(YOLO) that prioritizes speed and accuracy. Focusing on a lightweight variant of 

this architecture: YOLOv4 Tiny

• The YOLOv4 Tiny model uses a CSPDarknet53 backbone, making it suitable for 

Robot Operating System (ROS) framework integration and deployment on edge 

devices.

a)

b)

c)

• We presented LOCO, the first dataset focusing on scene understanding in logistics 

environments.

• This paper proposes an improved YOLOv4-tiny approach with ROS integration in terms of 

network structure. To reduce the consuming time of object detection

• Convert the 2D bounding boxes of detected objects into 3D representations to determine 

their spatial positions accurately.

• Use the transformed 3D bounding boxes to visualize the detected objects within the ROS 

environment, to take in consideration the SLAM navigation.
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Autonomous Mobile Robots (AMRs) are self-guided vehicles designed to move 

materials and goods from one point to another without human intervention. They use a 

combination of sensors, such as cameras, LiDAR, and ultrasonic sensors, along with 

sophisticated algorithms to perceive and interpret their surroundings in real-time. This 

enables them to navigate safely through cluttered spaces, avoid obstacles, and optimize 

their paths to accomplish tasks efficiently.

Despite their advanced capabilities, AMRs face several challenges in navigation and 

object detection within warehouse settings. These challenges include accurately 

identifying obstacles, localizing themselves within the environment, and navigating 

efficiently in dynamic and crowded spaces. 

Therefore, it is essential to develop robust, accurate and real-time model to detect and

localize object within the Logistics Objects .

• Bounding boxes are rectangular frames drawn around objects in images to 

precisely delineate their location: They provide essential spatial information.

Name YOLOv4 YOLOv4 

Tiny

Faster R-

CNN

mAP-50 41% 22,1% 20,2%

Stillage 27,7% 18,1% 28,3%

Transpallet 65,0% 36,2% 19,8%

Forklift 53,1% 31,3% 37,6%

Pallet 31,3% 11,6% 2,9%

Small Carrier 28,1% 13,3% 12,5%

Table II. Evaluation Results From the LOCO Dataset Publications

mAP@50=46% | IoU=50%

Figure 3. YOLOv4 Tiny object detection metrics : evaluation graphs

a) Precision graph b)Recall graph c) Loss/ mAP graph.             
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