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Abstract: Buildings’ classification using satellite images is gaining importance for several applica-
tions, such as damage assessment, resource allocation, and population estimation. This work focuses
on two specific classification tasks: building-type classification (residential or non-residential) and
building-damage assessment (damaged or not-damaged). These two tasks have recently become
of great interest, especially considering current global conflicts and natural disasters, such as the
Ukrainian conflict, the 2023 Turkey–Syria earthquake, and the recent tragic flood in Libya’s Derna.
Existing building-type classification approaches combine optical satellite images with LIDAR data or
street view images. We propose here to rely solely on RGB satellite images and follow a 2-stage deep
learning-based approach, where buildings’ footprints are extracted using a semantic segmentation
model, followed by the classification of the segmented images. To the best of our knowledge, this
is the first Building-Type Classification (BTC) method solely based on RGB aerial imagery. Optical
imagery is cost-effective and widely available and can be tasked and acquired quickly following
a military conflict or natural disaster. Supervised deep learning algorithms rely on high-quality
labeled datasets. Four Building-Damage Assessment (BDA) datasets are considered, analyzed, and
compared to choose the appropriate one for our research. For the scope of this work, we define a
damaged building as a partially or wholly demolished building that might result from armed con-
flicts, earthquakes, tornadoes, and hurricanes. On the other hand, due to the need for an appropriate
residential/non-residential building-type classification dataset, we introduce a new high-resolution
satellite imagery dataset called the Beirut Buildings Type Classification (BBTC) dataset. We conduct
experiments to select the best hyper-parameters and model architecture and propose an extra transfer
learning stage that outperforms the classical method. Finally, we validate the performance of the
proposed schemes, where BTC achieved a 94.8% accuracy using RexNet as a backbone, and BDA
scored 97.3% accuracy using Focal loss and Adam optimizer. With the extra transfer learning stage,
BDA improved in the last percentages of the accuracy and F1-score to reach 98.96% and 99.4%,
respectively.

Keywords: Building-Type Classification; Building-Damage Assessment; Hyper-parameter tuning

1. Introduction

Buildings classification is vital for many applications, such as buildings damage assess-
ment (BDA) and buildings type classification (BTC). Urban areas are constantly struck by
man-made and/or natural disasters, such as wars, tornadoes, and earthquakes, resulting
in large-scale buildings and urban infrastructure destruction. In the early reconstruc-
tion phase, damage assessment is performed manually using crucial information about
the area, amount, rate, and type of damage. In addition, buildings type classification
(e.g., residential/non-residential) pave the way for many real-world applications such as
population estimation and resource allocation.
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For these purposes, remote sensing techniques can play an important role, mainly
due to their wide availability at relatively low cost, wide field of view, and fast response
capacities. Using deep learning to build classification can speed up the process by reducing
human intervention and saving considerable time and cost.

Unlike other work that proposes to tackle such a task by adopting a model for se-
mantic segmentation with many classes [1,2], here we follow a 2-stage approach where we
disentangle the semantic segmentation from the classification. In a nutshell, a semantic
segmentation model takes an input RGB image and predicts buildings’ masks (i.e., stage 1).
In the second stage, buildings are cropped from the original image and fed to a classification
model to predict the class of each building. Also, we propose using only RGB satellite
images, which is more efficient than using other additional modalities. Optical images are
cost-efficient and widely available, and can be tasked and acquired quickly after a military
conflict or natural disaster.

This paper focuses on the second classification stage and conducts experiments to find
the best hyper-parameters and model architecture for the underlying task. Moreover, we
propose an extra transfer learning stage that extends the classical fine-tuning approach
by an additional stage that makes the model’s layers more consistent and specific to
the downstream task. Finally, we propose a new dataset for BTC. For space limitations,
we showed hyper-parameters optimization results for BDA while we focused on the
architecture design for BTC.

The rest of this paper is organized as follows: Section 2 reviews some of the related
works. Section 3 presents a brief background and details the methodology adopted in this
work. In Sections 4 and 5, we validate the proposed approach using Building Damage
Assessment and Building Damage Assessment applications, respectively, and discuss the
proposed dataset. Finally, Section 6 concludes this manuscript.

2. Related Work
2.1. Buildings Type Classification

In [3], the authors use an ensemble of machine learning models to classify buildings as
sprayable and non-sprayable based on characteristics of the buildings such as size, shape
and proximity to neighboring features. Similarly, in [4], authors use classical machine
learning approaches to predict if the building is residential or not based on several input
variables. Work presented in [5] propose to classify buildings type using geospatial data
(e.g., point-of-interest (POI) data, building footprints, land use polygons, and roads) based
on NLP and ratio-based techniques. In [6], an iterative clustering method is introduced
to classify buildings based on spatiotemporal data (e.g., population density and people
interaction). The random forest classifier is used in [7] to classify the footprint of buildings
from different data sources (e.g., topographic raster maps, cadastral databases, or digital
landscape models). The authors in [8] use object-Based Image Analysis (OBIA) and machine
learning methods to extract and classify buildings from Airborne Laser Scanner (ALS).
Gaussian finite mixture model is proposed in [9] to classify buildings based on several
metrics extracted from high-resolution satellite images. Finally, [10] combines street view
with satellite images to classify buildings using CNN models.

To the best of our knowledge, no method in the literature is solely based on RGB aerial
images to classify buildings types.

2.2. Buildings Damage Assessment

Authors in [11] assess the impact of the combined use of different resolution satellite
images on improving classification accuracy of damaged buildings using CNN.In [12], the
proposed method detects Flooded/Damaged buildings from satellite imagery of an area
affected by a hurricane. The study in [13] proposes an algorithm for building damage
detection from post-event aerial imagery, using a data expansion Single Shot multi-box
Detector (SSD) algorithm for a small data set of Hurricane Sandy. In [14], the authors use
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Figure 1. Sample damaged buildings scenes from the xView dataset.

CNN on a small set of candidates damaged buildings to reduce the required processing
time. Deep learning is also used in [15] to improve the detection of rooftop hail damage.

3. Methodology

In this section, we will focus on buildings classification where the model takes an
RGB image of a building and outputs the class of the building (damaged/non-damaged;
residential/non-residential).

Multiple loss functions exist and can be used during training. In this work, we focus
on two of the widely used losses in order to compare their performance and choose the
appropriate one for the task: (i) Binary Cross-Entropy loss and (ii) Focal loss [16].

During CNN training, the role of the optimizer is to update the weight parameters
to minimize the loss function. Multiple optimizers are suggested in the literature, such as
Momentum, Regular Gradient Descent (RGD), Stochastic Gradient Descent (SGD), Adam,
and RectifierAdam for classification tasks [17]. Although non-adaptive optimizers, such as
SGD, help obtain better minima and generalization properties. Adam optimizer is widely
used, as it leads to faster convergence due to its adaptive learning rate. However, Adam
suffers from significant variance at the beginning of training. Rectifier-Adam (also known
as RectAdam) [18] was proposed to improve the convergence of Adam. In a nutshell,
no optimizer works best for all the applications; thus, we propose a comparison of these
optimizers in this work.

3.1. Transfer Learning

Transfer learning is considered an innovative approach in CNN training to achieve
high accuracy with minimal time and effort, relying on the existing pre-trained model.
The idea is to use a model trained on a large dataset and transfer its knowledge to the
application at hand. The classical transfer learning approach is as-follows: (i) a model is
trained from scratch on a large dataset (i.e., pre-training on ImageNet [19]), then (ii) the last
layers of the model, are retrained for the downstream application. Here, we propose to
extend this approach by adding a third and final stage: (iii) we freeze the last layers of the
network and re-train initial layers (previously frozen) in order to ensure the consistency
between those layers and the last ones, and also to adjust all the weights according to the
specific target application.

4. Buildings Damage Assessment
4.1. Dataset

We considered four different datasets as potential candidates for the BDA application:
ABCD Dataset [20], Flooding Dataset [12], NOAA Dataset [21] and xView Dataset [22].
We used several parameters for the datasets benchmark where "damage type" was the
critical metric. "Damage type" differs based on the disaster event: war, earthquakes, and
wind (hurricanes and tornadoes) usually result in completely or partially demolished and
ruined buildings. Flooding produces water in areas where it is not normally expected,
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Figure 2. (a) and (b) show the accuracy and loss, respectively, in function of time for BDA: the model
is trained with SGD, Adam and RectAdam optimizers. The model trained with SGD struggles to
converge. Adam optimizer leads to faster convergence.

Dataset
Number

of Objects
Resolution
(in pixels) Format Generalizable

ABCD dataset [20] 8,500 128x128 .tif No
Flooding dataset [12] 10,000 128x128 .jpeg No
NOAA dataset [21] 500,000 9351x9351 .tif No
xView dataset [22] 1,000,000 3000x3000 .tif Yes

Table 1. Datasets survey and comparison.

while a volcano erupts lava. For the scope of this work, we define a damaged building as a
partially or completely demolished building. This definition covers the most common type
of damage resulting from armed conflict, earthquakes, tornadoes, and hurricanes.

Table 1 shows a comparison between these four datasets. One can conclude that xView
dataset is the best candidate for our research. xView dataset is well labeled and large
enough. Figure 1 shows sample damaged scenes from the xView dataset.

4.2. Experimental Results

In this section, we present the results for the different scenarios discussed in Section 3
based on the xView dataset. For each scenario, we rely on a CNN network made from three
layers of Convolutions + MaxPooling followed by the Flatten, Dense, and finally Softmax
layer. In our work, we used the Sigmoid activation function for each convolution layer and
the ReLU activation function for the dense layer. We carried out an evaluation study of the
test data. The convergence condition is to reach a high accuracy value ( 99%) and low loss
threshold (≤ 0.001) in trained data.

We trained two models using cross-entropy loss and focal loss until they converged.
Both models converge to 99%, but focal loss converges faster during training (127 vs. 138
epochs). Also, focal loss scores slightly higher accuracy over the testset (97.56% vs 97.33%),
and thus it will be adopted as part of the following scenario.

No single optimizer choice can be made for all different CNN downstream applications.
We compared three optimizers: (i) SGD, (ii) Adam and (iii) RectAdam. Figure 2a and b
show the accuracy metric and the loss metric, respectively, as a function of time (number of
epochs) for SGD, Adam, and RectAdam optimizers. The results reveal that SGD struggled
to converge. In terms of accuracy, Adam and RectAdam score a better result (97. 3% and 97.
2%, respectively) than SGD (85.1%). Regarding the number of epochs needed to converge,
Adam is much faster than RectAdam (137 vs. 174 epochs). We will adopt Adam optimizer
for the damaged building classification application in the following scenarios.



Environ. Sci. Proc. 2023, 1, 0 5 of 8

Epochs Accuracy (%)

TL-VGG16 23 96.12
E-TL-VGG16 (ours) 69 (23 + 46) 98.96

Baseline 127 97.33

Table 2. Comparison of different trained paradigms for BDA; ours (E-TL-VGG16) is the best in terms
of accuracy and faster to train than the baseline.

Transfer Learning Results

We considered the following three scenarios:

• Scenario 1: network trained from scratch without using any pre-trained weights. We
will refer to this model as Baseline model.

• Scenario 2: network trained based on transfer learning approach using VGG16 pre-
trained weights on ImageNet dataset [23]. We freeze all layers and train only the last
layers of the network. We will refer to this model as the TransferLearning-VGG16
(TL-VGG16) model.

• Scenario 3: extra transfer leaning stage (discussed in Section 3.1) where an additional
final step is added. We will refer to this model as the Extra-TransferLearning-VGG16
(E-TL-VGG16) model.

Table 2 clearly shows the difference in the convergence time, where TL-VGG16 iterates
only for 23 epochs to converge, while the Baseline model needed 127 epochs. However,
this does not result in higher accuracy where TL-VGG16 achieved 96.12% accuracy over
the test data, which is lower than the 97.33% scored by the Baseline model.

The rationale behind the E-TL-VGG16 model is to improve the accuracy of the transfer
learning approach while maintaining good enough convergence speed. At epoch 23, when
we un-freeze the VGG16 layers and de-freeze the last layers, accuracy metric sharply
decreases, and loss sharply increases. After this glitch in performance, the network spends
69 epochs to re-converge to previously attained thresholds. E-TL-VGG16 performance
tabulated in Table 2 reveals an important improvement in the last percentages of accuracy
to reach 98.96%. Finally, we also compute the F1-score achieved by E-TL-VGG16, which
turns out to be 99.4%.

5. Buildings Type Classification

To the best of our knowledge, there is no high-resolution satellite image data set to
classify buildings into residential / non-residential. We introduce a new "Beirut Buildings
Type Classification" (BBTC) dataset to help the community develop this field further. BBTC
dataset consists of 17,033 RGB images, where each image contains a single building and is
annotated as residential (15,330 buildings) or non-residential buildings (1,703 buildings,
which represents 10% of the annotated objects). The tiles are extracted from 50-cm optical
images that cover the city of Beirut. Some examples can be seen in Figure 3.

BBTC dataset was created and labeled using the following routine: (i) buildings poly-
gons are extracted from OpenStreetMap as a shapefile then (ii) annotation is done using
QGIS software where the shapefile is overlayed on two basemaps for visual confirmation
(Bing Virtual Earth and Google Satellite Hybrid) and each building is labeled as either
residential or non-residential. Non-residential objects include universities, schools, govern-
ment facilities, mosques, churches, commercial centers, and industrial facilities. (iii) Then,
50-cm resolution tile for each building is cropped (slightly larger than the corresponding
polygon to account for any inaccuracy) and saved. Duplicate buildings were ignored,
reaching a total of 17,033 objects. BBTC dataset can be accessed through the following GCP
bucket: https://storage.googleapis.com/bbtc/bbtc_dataset.tar.gz

https://storage.googleapis.com/bbtc/bbtc_dataset.tar.gz
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Residential Non Residential

Figure 3. Sample of buildings images from the proposed BBTC dataset.

Model
Avg. time

(per epoch) Val. Acc Epoch Test Acc

VGG16 3m20s 0.953 95 0.935
ResNet 50 5m30s 0.947 44 0.933
Res2Net 9m30s 0.960 40 0.943

EfficientNet 3m13s 0.960 49 0.941
RexNet 3m15s 0.962 99 0.948

Table 3. Ablation study for BTC on the proposed dataset; We compare different architectures. RexNet
outperforms all other models in terms of accuracy.

5.1. Experimental Results

We compared 5 different backbones including state-of-the-art ones; VGG16, ResNet50
[24], Res2Net [25], EfficientNet-B0 [26] and RexNet [27]. Table 3 shows that RexNet gives
the best results in terms of accuracy in the test set (94.8%), while average time per epoch
(3minutes 15 seconds) is almost equal to EfficientNet. RexNet is a newly proposed ar-
chitecture where the authors claim to provide high accuracy while achieving a low time
complexity comparable to EfficientNet.

Finally, we adopt the winning model (i.e., RexNet) and train it using different optimiz-
ers. From Table 4, one can notice that the SGD optimizer was able to converge, in contrast to
the previous performance witnessed in Table ??. SGD achieved the best accuracy on the test
set (94.8%) compared to Adam and RectAdam, although it is the slowest with convergence
time equal to 99 epochs.

Optimizer
Avg. time

(per epoch) Val. Acc Epoch Test Acc

SGD 3m15s 0.962 99 0.948
Adam 3m15s 0.957 90 0.945

RectAdam 3m15s 0.958 68 0.947

Table 4. Ablation study for BTC on the proposed dataset; RexNet is trained with several optimizers.
SGD leads to the best accuracy, while RectAdam leads to faster convergence.

6. Conclusions

In this paper, we focus on buildings classification using only RGB satellite images. We
conducted experiments to find the best hyperparameters, backbone, and we proposed an
extra transfer learning stage. Due to the lack of an appropriate residential/non-residential
buildings classification dataset, we proposed the Beirut Buildings Type Classification
(BBTC) dataset. We validated the proposed approach on two applications: Buildings
Damage Assessment and Buildings Type Classification over the xView and BBTC datasets.

Funding: This research received no external funding.

Conflicts of Interest: “The authors declare no conflict of interest.”
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