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Effective Strategies for Early Detection of Inter-Turn Short-Circuit Faults in 
Line-Start Permanent Magnet Synchronous Motors

INTRODUCTION & AIM
• Line-Start Permanent Magnet Synchronous Motors (LS PMSMs) have emerged in response to 

strict efficiency goals [1], [2], [3]. 
• Capable of starting directly connected to the grid, LS PMSMs are highly recommended for 

replacing older induction motors and have been the target of significant technological advances [2], 
[3]. 

• Combining features of permanent magnet synchronous motors and induction motors, LS PMSMs 
include rotors with permanent magnets and a squirrel cage. They operate as PMSMs at steady 
state and start like mains-fed induction motors without needing a power electronics converter [3]. 

• The increasing importance of LS-PMSMs in modern industry necessitates the development of 
effective fault diagnostics to prevent unexpected breakdowns, which could lead to catastrophic 
economic losses and human casualties [4]. 

• Previous research has focused mainly on demagnetization and rotor faults. However, stator 
winding faults, often due to aging, represent a significant portion of faults in three-phase AC motors 
(21%-37%). Literature addresses modeling and online detection of interturn short circuits faults 
(ITSCFs) in both induction motors and PMSMs, with several techniques proving effective under 
constant load and balanced voltage conditions [5], [6].  

• This study presents an intelligent technique for online detection of ITSCFs in LS-PMSM stator 
windings, involving real-time estimation of Impedance Symmetrical Components (ISCFs) using 
the Short Time Least Square Prony’s Technique (STLSP). To validate the efficacy of the proposed 
technique, extensive testing of LS PMSMs have been conducted under diverse operating 
conditions, including varying fault severities, load variations. 

PROPOSED METHOD
• The proposed indicators are extracted from the monitored system, based on the online 

measurements of stator currents and voltages, using the STLSP algorithm to obtain their 
spectrum, only the fundamental component of each signal is taken into consideration [7], [8].

• Calculation of the Fortescue symmetrical components related to the stator winding voltages 
and impedances:
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ZVF: Zero Voltage Factor; NCF: Negative Current Factor; ZP, ZN, Z0: Positive, Negative 
and Zero sequence of the impedances.

Figure 1. Description of the proposed method and its strategy for indicator extraction.

(1)

Acknowledgments: This work was supported by the Portuguese Foundation for Science and Technology (FCT) under Projects 
UIDB/04131/2020 and UIDP/04131/2020.

CONCLUSIONS & FUTURE WORK
• This research presents a new real-time system for diagnosing ITSFs in LS-PMSMs.
• The STLSP method computes the proposed indicators (ZVF, NCF) for identifiying incipient

ITSC faults in LS-PMSMs.
• The effectiveness of the indicators, ZVF and NCF, in detecting the occurrence of an interturn 

short circuit is evident from the variation in values corresponding to different fault severities. This 
demonstrates efficacy of the indicators in accurately identifying fault conditions.

• Table 1 and Table 2 indicate that there are no significant variations under different load 
conditions. This confirms the robustness of the technique against load variation. 

• The obtained findings support the method’s reliability, accuracy, and adaptability for detecting 
ITSC faults.

• In the coming stages, the primary objective is to experimentally validate the results presented 
by the approach.

RESULTS & DISCUSSION

Figure 4. ZVF indicator, assessed for healthy state and in the presence of ITSCF with different severities.
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Figure 3. NCF indicator, assessed for healthy state 
and in the presence of ITSCF with different severities.
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Figure 2.  ZA indicator, assessed for healthy state and 
in the presence of ITSCF with different severities.
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Table 2. Quantitive values of the proposed indicators with 7 Nm.

Healthy 7 turns 14 turns 30 turns Rate of variation (%)
7 turns 14 turns 30 turns

ZVF 0,0000000492 0,002938 0,007879 0,01423 >> 1000 % >> 1000 % >> 1000 %

NCF 0,00004747 0,04392 0,1072 0,1814 >> 1000 % >> 1000 % >> 1000 %

ZA 94,56 98,15 82,9 72,8 4% -12% -23%

ZB 94,49 105,2 99,84 100,4 11% 6% 6%

ZC 94,58 105,1 94,38 81,95 11% 0,2% -13%

RESULTS & DISCUSSION
Table 1. Quantitive values of the proposed indicators with 0 Nm.

Healthy 7 turns 14 turns 30 turns Rate of variation (%)
7 turns 14 turns 30 turns

ZVF 0,000000306 0,002938 0,007879 0,01423 >> 1000 % >> 1000 % >> 1000 %

NCF 0,000008228 0,04392 0,1072 0,1814 >> 1000 % >> 1000 % >> 1000 %

ZA 125,7 98,15 82,9 72,8 -16% -21% -20%

ZB 125,7 105,2 99,84 100,4 -22% -34% 42%

ZC 125,8 105,1 94,38 81,95 -16% -35% -35%


