
Definitions/logo-updates-eps-converted-to.pdf

Citation: Gizzini, A.; Shukor, M.;

Ghandour, A. Extending CAM-based

XAI methods for Remote Sensing

Imagery Segmentation. Environ. Sci.

Proc. 2023, 1, 0. https://doi.org/

Published:

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Extending CAM-based XAI methods for Remote Sensing
Imagery Segmentation
Abdul Karim Gizzini 1, Mustafa Shukor 2 and Ali J. Ghandour 3*

1 Center for Digital Systems, IMT Nord Europe, Institut Mines-Télécom, University of Lille;
2 Sorbone University;
3 National Center for Remote Sensing - CNRS, Lebanon; aghandour@cnrs.edu.lb
* Corresponding author: aghandour@cnrs.edu.lb

Abstract: Artificial intelligence (AI) has recently covered many earth observation applications. AI-
based data-driven methods perform exceptionally well in several remote sensing image processing
tasks, such as object detection, classification, and segmentation. However, current AI-based methods
do not provide comprehensible physical interpretations of the used data, extracted features, and
predictions/inference operations. As a result, deep learning models trained using high-resolution
satellite imagery lack transparency and explainability and can be simply seen as a black box, which
limits their wide-level adoption. Experts need help understanding the complex behavior of AI models
and the underlying decision-making process. The field of explainable artificial intelligence (XAI)
is an emerging field that provides means for a robust, practical, and trustworthy deployment of
AI models. Several XAI techniques have been proposed for image classification tasks, while the
interpretation of image segmentation remains largely unexplored. This paper offers to bridge this gap
by adapting the recent XAI classification algorithms and making them usable for muti-class image
segmentation, where we mainly focus on buildings’ segmentation from high-resolution satellite
images. To benchmark and compare the performance of the proposed approaches, we introduce a
new XAI evaluation methodology and metric based on "Entropy" to measure the model uncertainty.
Conventional XAI evaluation methods rely mainly on feeding area-of-interest regions from the image
back to the pre-trained (utility) model and then calculating the average change in the probability of
the target class. Those evaluation metrics lack the needed robustness, and we show that using Entropy
to monitor the model uncertainty in segmenting the pixels within the target class is more suitable.
We hope that this work will pave the way for additional XAI research for image segmentation and
applications in the remote sensing discipline. Our code is publicly available at this Repo.

Keywords: explainable artificial intelligence (XAI); remote sensing; building segmentation; entropy

1. Introduction

Recently, artificial intelligence (AI)-based models have been employed in a variety of
computer vision tasks, from image classification, semantic segmentation, and object detec-
tion to image captioning, and visual question answering [1]. These models mainly depend
on convolutional neural networks (CNNs) that record superior performance. However,
due to their complex deep architectures, CNNs are difficult to interpret [2] and experts
cannot understand the decision-making methodology of such models.

Transparency is the ability of AI-based models to explain why they predict what they
predict. Designing transparent models is crucial to build trust and pave the way for the
integration of these systems into our daily lives. It was noted that better explainability
and interpretability could be achieved using simple architectures with the cost of limited
performance. In contrast, using deep architectures sacrifices explainability to achieve better
performance [3].

Visual XAI methods are often used, where the aim is to highlight the parts of an input
image that contributed the most to a particular prediction. Generally speaking, there are

Environ. Sci. Proc. 2023, 1, 0. https://doi.org/10.3390/0 https://www.mdpi.com/journal/environsciproc

https://www.mdpi.com/article/10.3390/0?type=check_update&version=1
https://doi.org/10.3390/0
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com
https://orcid.org/0000-0001-7642-5900
https://github.com/geoaigroup/GEOAI-ECRS2023
https://doi.org/10.3390/0
https://www.mdpi.com/journal/environsciproc


Environ. Sci. Proc. 2023, 1, 0 2 of 7

two main categories of XAI methods [4]: (i) perturbation-based or gradient-free methods,
where the concept is to perturb input features (i.e., feature maps) by masking or altering
their values, and record the effect of these changes on the model performance and (ii)
gradient-based methods where the gradients of the output (logits or soft-max probabilities)
are calculated with respect to the extracted features or the input via back-propagation and
used to estimate attribution scores. Gradient-based visual explanation methods are well
known due to their computational efficiency.

In classification problems, a good visual explanation of the model decision should
localize the target class in the image (i.e., being class-specific), in addition to capturing
fine-grained details within the target class. Therefore, the target class within the input
image should be highlighted. However, this is not always the case in semantic segmentation
problems, where spatial correlation between neighboring pixels within the input image
should also be taken into consideration. In other words, highlighting pixels within the
target class may not be enough, since pixels outside the target class may also contribute
to the model decision in the segmentation task. In this context, developing XAI methods
for semantic segmentation is a challenging but not well-explored task.

In this paper, we focus on buildings’ rooftop segmentation models from high-resolution
satellite images. A straightforward methodology is to adapt existing classification XAI
methods toward semantic segmentation. The authors in [5] adapted the gradient-weighted
class activation mapping (Grad-CAM) method [6] that was originally proposed for classifi-
cation to semantic segmentation. Inspired by the accomplished work in [5], we adapt in
this work a set of CAM-based XAI methods from classification to semantic segmentation.
We also propose a new XAI evaluation metric that uses Entropy to measure the model
uncertainty when feeding only the highlighted important regions, in addition to the target
class pixels to the model. To our knowledge, this work constitutes the first attempt to apply
XAI gradient-based methods to remote sensing imagery segmentation. To sum up, the
contribution of this paper is three-folds:

1. Adapt five recently proposed CAM-based XAI methods from classification to semantic
segmentation.

2. Propose a new XAI evaluation methodology and metric that uses entropy to measure
the model uncertainty.

3. Benchmark the performance of the proposed XAI methods using the WHU dataset
for buildings’ footprint segmentation from high-resolution satellite images.

2. Grad-CAM for Semantic Segmentation

The convolutional layers retain spatial correlation, where the neurons capture the
class-specific information in the image, i.e., parts related to the target object. In this context,
the original Grad-CAM paper [6] uses the gradient of the last convolutional layer to assign
an importance indicator to each neuron for a particular desired decision.

Let Ak be the kth feature map, where 1 ≤ k ≤ K, and K denote the total number
of feature maps of the last convolutional layer of a classification network. Grad-CAM
averages the gradients of the class of interest c with respect to all N pixels (indexed by u, v)
of each feature map Ak to produce a weight αc

k that denotes its importance as shown in
Equation (1):

αc
k =

1
N ∑

(u,v)

∂yc

∂Ak
u,v

, (1)

where yc denotes the classification score of class c, and ∂yc

∂Ak
u,v

denotes the gradients of

yc with respect to k − th feature maps. These gradients are calculated through backward
propagation. After that, the feature maps are weighted with the calculated weights and
passed to a ReLU function as shown in Equation (2):



Environ. Sci. Proc. 2023, 1, 0 3 of 7

Lc
Grad-CAM = ReLU

(
∑
k

αc
k Ak

)
. (2)

Seg-Grad-CAM [5] modifies Equation (1) to be able to use it for the downstream
segmentation task as shown in Equation (3):

αc
k =

1
N ∑

(u,v)

∂ ∑(i,j)∈M yc
i,j

∂Ak
u,v

, (3)

where M is the set of pixel indices (i, j) of interest in the output segmented mask.
After calculating the weights, Seg-Grad-CAM proceeds according to Equation (2). Hence,
Seg-Grad-CAM highlights the important pixels that contribute to the segmentation decision
of the considered region of interest.

3. CAM-based Extensions

This section sheds light on the five recent CAM-based extensions, showing their main
limitations and corresponding key enhancements. We adapted all these five methods from
classification to semantic segmentation following the same approach shown in (3), that is,
replacing the classification score with the segmentation scores of the target class.

1. Seg-Grad-CAM++ [7]: has been designed to address the limitation of Grad-CAM that
lies in localizing multiple occurrences of the same object (class) within the input image.
This could be addressed by taking a weighted average of the pixel-wise gradients,
where Equation (1) can be rewritten as Equation (4):

αc
k = ∑

(u,v)
wk,c

u,v ReLU
( ∂yc

∂Ak
u,v

)
, (4)

where wk,c
u,v are the weighting coefficients of the pixel-wise gradients for class c and

feature map Ak. Therefore, wk,c captures the importance of a particular activation
map, ensuring that all the features maps related to the target class are highlighted
with equal importance.

2. Seg-XGrad-CAM: which adapts Axiom-based Grad-CAM [8] to the segmentation
realm. The main enhancement in [8] is in the calculation of the importance weight of
the feature map by solving an optimization problem that meets the sensitivity and
conservation constraints. The optimal αc

k is expressed in Equation (5):

αc
k = ∑

(u,v)

( Ak
u,v

∑(u,v) Ak
u,v

∂y′c

∂Ak
u,v

)
(5)

where y′c denotes the sum of the element-wise product of feature maps and the
gradient maps of the target layer.

3. Seg-Score-CAM: which adapts Score-CAM [9] from classification to segmentation.
Gradients are noisy and may not be an optimal solution for highlighting important
regions within the input image. Hence, the "Increase in Confidence" criteria is used
in [9] to quantify the feature map importance, where the feature map weight αc

k is
calculated in Equation (6):

αc
k = C(Ak). (6)

where C(.) denotes the increase in confidence score for the feature map considered Ak.
This can be calculated by perturbing the input image by Ak, where the importance of
this activation map is obtained by the target score of the perturbated input image.

4. Seg-Ablation-CAM: which adapts Ablation-CAM [10] to segmentation. Backpropa-
gated gradients do not retain spatial information related to the target class. Thus, the
gradient-free Ablation-CAM method [10] is based on the idea of calculating yc

k in the
presence of the feature map Ak and repeating the forward pass of the original input
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image but with zero feature maps. Therefore, the output score yc is reduced compared
to yc

k and acts as a baseline. In this context, the "importance weight" of each feature
map can be computed as shown in Equation (7):

αc
k =

yc − yc
k

yc . (7)

The "importance weight" can be interpreted as the drop in the class c score when the
feature map Ak is removed.

5. Seg-Eigen-CAM: which finally adapts Eigen-CAM [11] to the task at hand. Work
in [11] is based on the principal components of the learned representations from the
convolutional layers without the need for backpropagation. Let O be the output of
the semantic segmentation of the target class, where its principal components can be
computed by factorizing using the singular value decomposition. Lc

Seg-Eigen-CAM is
then computed as follows in Equation (8):

Lc
Seg-Eigen-CAM = OV1, O = UΣV T . (8)

U represents the left singular vector, V refers to the right singular vector with V1 as the
first eigenvector, and Σ is a diagonal matrix with singular values along the diagonal.

4. XAI Evaluation

This section sheds light on the performance evaluation of the studied XAI methods.
First, we introduce the proposed theoretical evaluation framework, where we define the
evaluation methodologies used in addition to the proposed entropy evaluation metric and
discuss the results.

4.1. Proposed Framework

Performance evaluation of XAI methods, including the methodology and evalua-
tion metric employed, has been an active research topic. In classification problems, XAI
evaluation is based on two main methodologies:

• M1 - Background only: where the highlighted relevant pixels are masked from the
original image, and then the masked image is fed again to the pre-trained model, where
the drop in the classification score is expected. A higher drop in the classification score
signifies that the corresponding XAI method is better, as the model cannot preserve
the previously achieved classification score when the relevant pixels are masked.

• M2 - Highlighted only: In contrast to M1, here the idea is to mask the background and
keep only the relevant pixels highlighted. In this case, an increase in confidence is
expected due to the fact that we are feeding the model with the pixels needed only
to perform the classification task. We note that in some cases there is no increase in
the classification score due to masking of a large part of the input image. In this case,
a lower drop in the classification score means that the corresponding XAI method is
better
It is worth mentioning that monitoring the change in the segmentation score employ-
ing M1 and M2 could be applied in the semantic segmentation task, but this is not
enough due to the spatial correlation between neighboring pixels. In other words,
masking pixels from the input image may impact the model decision to segment other
classes. XAI method for the segmentation task is expected to highlight relevant
pixels, regardless of whether these relevant pixels are part of the target class or any
other classes. Therefore, monitoring the change in the segmentation score of the
target class is not enough to measure the performance of an XAI method.
To handle this challenge, we suggest the following evaluation methodology denoted
as M3 for semantic segmentation:
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Figure 1. Saliency map of the studied CAM-based XAI methods for semantic segmentation. The
target class is "buildings" and the inspected layer is the first UNet decoder block.

• M3 - Highlighted + Target: Let T ⊆ Ω be the set of pixels belonging to the target class
c, where Ω refers to the universe (entire set) of pixels of a given input image I. Let Φ

be the set of relevant pixels highlighted by the XAI method. The perturbated image I′

to be passed to the model is defined as I′ = Φ ∪ T .

Based on M3, we propose the use of Shannon’s entropy [12] as an evaluation metric of
XAI. Given an input image I, the pixel-wise entropy map EI can be calculated as depicted
in Equation (9):

E(i,j)
I = − 1

log(L)

L

∑
l=1

P(i,j,l)
I log

(
P(i,j,l)

I

)
. (9)

PI denotes the L-diemnsional softmax output of the model under consideration. The
propposed entropy metric EXAI is calculated as shown in Equation (10):

EXAI = ∑
i,j

E(i,j)
I . (10)

We note that EXAI measures the model’s uncertainty in segmenting the target class’s
pixels. We note that a lower increase in the EXAI means that the pre-trained model can
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Table 1. Evaluation of XAI methods for semantic segmentation using three Metrics/Methodologies
pairs: (i) Drop in Segmentation Score/M1 - Background only (higher is better), (ii) Drop in Segmenta-
tion Score/M2 - Highlighted only (lower is better), and (iii) increase in entropy/M3 - Highlighted
+ Target (lower is better). We note that the reported results are for the WHU test set. The average
Segmentation Score (SS) and entropy are 89.11% and 0.000898, respectively, for the entire input image
I.

XAI Method Seg-Grad-CAM Seg-Grad-CAM++ Seg-XGrad-CAM Seg-Score-CAM Seg-Eigen-CAM Seg-Albation-CAM

(%) Drop in SS/M1

(higher is better)
4.80% 10.32% 5.04% 13.04% 9.19% 5.23%

(%) Drop in SS/M2

(lower is better)
56.51% 49.76% 56% 45.96% 47.49% 55.51%

(%) Increase in EXAI/M3

(lower is better)
43.65% 58.12% 43.82% 33.63% 71.49% 43.65%

better classify the target pixels within the target class when it sees (highlighted pixels +
target class pixels) only.

4.2. Results

In this subsection, we rely on the rooftop segmentation model [13] trained using the
WHU dataset. The baseline segmentation score and entropy correspond to the segmentation
results when the full input image I is fed to the model considered. Table 1 shows results
for studied M1 (Backgorund only), M2 (Highlighted only) XAI evaluation methodologies
where the drop in Segmentation Score (SS) is recorded. In addition to the proposed
M3 (Highlighted + Target class) XAI evaluation methodology that employs EXAI as an
evaluation metric.

As mentioned earlier, the higher the drop when using M1, the better. The lower the
drop when employing M2, the better. We can observe in row 2 of Table 1 a large drop in
the segmentation score for all six XAI methods when using M2 - Highlighted only, which
comes as a surprise and is attributed to the fact that a large part of the input image is being
masked (after thresholding).

When employing M1, Seg-Score-CAM is the best performer and records the highest
drop in segmentation score. Seg-XGrad-CAM is the worst performer and records the
lowest drop in the segmentation score. When using M2, Seg-Score-CAM again is the best
performer and records the lowest drop in segmentation score. Seg-Grad-CAM is the worst
performer and records the highest drop in the segmentation score.

On the other hand, when using M3, Seg-Score-CAM is the best performer and records
the lowest increase in entropy. Seg-Eigen-CAM records the highest increase in entropy,
which means that it has the worst performance among the XAI methods studied. Therefore,
the pixels highlighted by Seg-Eigen-CAM are not the important ones used by the model to
segment rooftops according to Entropy/M3.

So, in summary, the results of M3 in Table 1 confirm the findings of M1 and M2 that
Seg-Score-CAM returns the best explanation. The qualitative results of Seg-Score-CAM in
Figure 1 reveal that the most relevant pixels are located towards the buildings’ boundaries.
This finding is directly related to the observation stated earlier: in the segmentation task,
pixels outside the target class might contribute to the model decision. Furthermore, the
tabulated results for M1, M2, and M3 are consistent in that Seg-Grad-CAM, Seg-XGrad-
CAM, and Seg-Abblation-CAM show comparable performance.

The main difference is related to Seg-Eigen-CAM, found to be poorly performing (the
worst) under entropy and M3, whereas it is amongst the best performers using M1 and M2.
The qualitative results in Figure 1 confirm that the Seg-Eigen-CAM saliency map did not
do a good job explaining the behavior of the underlying model. This case study clearly
shows the importance of the proposed entropy metric and M3 evaluation methodology
when evaluating segmentation-based XAI methods.
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5. Conclusions

This paper sheds light on the adaptation of recent gradient-based and gradient-free
XAI methods for semantic segmentation tasks, with a particular focus on buildings’ seg-
mentation from high-resolution satellite images. We proposed a novel XAI evaluation
methodology and metric based on entropy to measure the model uncertainty in segmenting
the target class pixels. The results show that the gradient-free Seg-Score-CAM method
outperforms the other benchmarked methods. As a future perspective, we will investigate
the ability to design hybrid XAI methods, in addition to extending the XAI evaluation
methodologies to cover more reliable interpretations.
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