IOCFB 2024 Conference

The 1st International Online Conference on Functional Biomaterials 10–12 July 2024 | Online

A new strategy based on methylene blue and boron nitride for local photodynamic therapy

Darya S. Kalugina¹, Polina O. Fedorova^{3,4}, Irina O. Chikileva², Roman V. Timoshenko¹, Kristina Yu. Kotyakova¹, Andrei T. Matveev¹, and Dmitry V. Shtansky¹ ¹National University of Science and Technology MISIS, 4s1 Leninsky prospekt, Moscow, 119049, Russia

² Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 23 Kashirskoe highway, Moscow, 115478, Russia

³ Federal State Budgetary Scientific Institution «Research Institute of Vaccines and Serums them. I.I. Mechnikov», 5Ac9 Maly Kazyonny Lane, Moscow, 105064, Russia

⁴ Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8-2 Trubetskaya street, Moscow, 119991, Russia

m2208408@edu.misis.ru

INTRODUCTION & AIM METHOD The injection use of methylene blue (MB) solutions in photodynamic therapy (PDT) is limited by their rapid transition to ineffective leuko methylene blue in the hypoxic tumor **PHOTOSENSITIZER**

environment and the uncontrolled self-aggregation of MB molecules [1]. The concept of the presented development was the adsorption immobilization of MB on the surface of a photocatalyst support (h-BN) to create a system (h-BN/n-MB heterostructures) with consistently increased photoactivity due to the synergistic interaction of the components.

leuco-MB

I-aggregate MB

Preparation of heterostructures h-BN/n·MB

Methylene blue (MB) in the form of hydrochloride salt (with three water molecules) "Rushim" (Moscow, Russia)

PHOTOCATALYST Nanoparticles hexagonal boron nitride with an

Generation of reactive oxygen species enhanced by synergistic effect

Exposure to sunlight (light dose for suspensions 82.5 J/cm^2

MB

h-BN

RESULTS & DISCUSSION

Characterization of h-BN/n-MB heterostructures

Figure 1. FTIR spectra of h-BN, dried MB solution and h-BN/n-MB heterostructures (a). Fluorescence spectra of h-BN/n-MB suspensions and MB solution (0.3 mg/mL) (b)

It was established that upon adsorption on h-BN, MB molecules form H-aggregates

ROS formation and recombination kinetics

Figure 2. SEM images and corresponding EDX spectroscopy B and C maps of h-BN/200MB heterostructures

Biological tests

Figure 4. Viability of A-375 (a) and Wi-38 (b) cells in suspensions of h-BN NPs and h-BN/n-MB heterostructures after 24 and 48 h (a) and 24, 48, and 72 h (b) relative to control cells (without suspensions)

Figure 3. Changes in ROS concentration in h-BN/n-MB suspensions, h-BN NP solution, and MB solution (22.5 µg/ml) over 24 h after irradiation with sunlight for 30 min

h-BN/200MB heterostructures generated:

✓ 3x more ROS than pure h-BN ✓1.2x more ROS than free MB (within the first hour after irradiation)

CONCLUSION

A new sunlight-activated platform for local PDT has been developed. h-BN/n-MB heterostructures demonstrate a high therapeutic potential due to their strong oxidative activity. The presented data confirm the feasibility of using heterostructures to enhance the photoefficiency of low doses of MB.

The IC₅₀ of h-BN/200MB heterostructures for A-375 cells after 24 h of cultivation was total 7.5 µg

h-BN/200MB heterostructures reduced melanoma cell survival by 89% in 48 hours

h-BN/n-MB heterostructures don't have dark toxicity to fibroblasts

The density of MB H-aggregates affects the biocompatibility of h-**BN/n-MB** heterostructures

FUTURE WORK / REFERENCES

de Miranda, É. G.; Toledo, V. H.; dos Santos, C. G.; Costa, F.; Diaz-Lopez, M.; de Queiroz, T. B.; Nascimento O. R.; Nantes, I. L. Organic matrix-entrapped methylene blue as a photochemical reactor applied in chemical synthesis and nanotechnology. Journal of Photochemistry and Photobiology A: Chemistry. 2023, 444, 115015.