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Relationship between NDV| & Biomass in Coffee Plots

NDVI
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* April 2021
April 2023
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aboveground biomass (Mg dry biomass/ha)

We found that the relationship
between field data (biomass) and
NDVI (vegetation health) was
inconsistent. In some cases,
lower biomass had higher NDVI
values, meaning more analysisis
needed to accurately assess
forest health.

Examined traditional regression
models to establish baseline
performance:
Linear regression
Polynomial regression
Generalized Additive Models
(GAM)
Cubic polynomial regression,
among others.




Using Neural Networks to Predict NDVI in Coffee Plots

» Type of machine learning model

* We used a neural network model—an advanced computer program that learns
from data. It analyzed relationships between biomass and NDVI to make more
accurate predictions about forest health.

Input fayer: data being fed into the network is the biomass
values from the coffee plots

Hidden layer: there are 2 hidden layers, each with 64 units
(neurons). These neurons look for patterns in the data and
use a decision-making function called RelLU (Rectified

SmemeE Linear Unit). This function helps the network figure out
Q OEIEN Which information is important and which is not, allowing
it to focus on the meaningful patterns in the data.

Outputlayer: the result is the predicted NDVI values based
on the biomass data.

Multiple Hidden The model is trained (fit) using the healthy forest data (x =
Layers biomass and y = NDVI) for 100 epochs.




Relationship between NDV| & Biomass using Neural Networks

Relationship between Biomass and Predicted NDVI in Coffee Plots

Mean Squared Error (MSE): 0.0003

Root Mean Squared Error (RMSE): 0.017
Mean Absolute Error (MAE): 0.01
R-squared (R?): 0.97

Our model performed well, with a very
small error (MSE) and a high level of
accuracy (R? = 0.97), meaning it can
predict forest health from biomass data
with confidence.
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Reclassify NDVI| using Predicted NDVI

e« Example of NDVI
values
reclassification for
2023 Sentinel 2
imagery based on

—Predicted NDVI 2023 the Neural Network

—=Calculated NDVI 2023
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Reclassify NDVI| using Predicted NDVI

* Sentinel 2 imagery
at 10m resolution

 We used the
predicted NDVI
values to update
satellite maps of
forest health,
improving accuracy.
This process helps
us see where forests

° COffee PloS {:i‘.' ‘:}m & : .-‘Z* ::“. &%
NDVI CARAE JIRIRE S Wdes PN T .
=P AR R e o S ; are egra Ing an
0.5 g ) 2 # g

» ; —.:..5; i.w;..',‘-; ;:_:' p t-.;;,.' Ve S i x ‘ ' b !
- TP L o L T (i where they're

1

recovering



Degradation Mapping

* NDVI assess density of green vegetation, indicating its health and vigor.
« BUT unable to detect changes in vegetation such as water stress or chlorophyll content
» Need to couple NDVI with other indices e.g.

(1) Normalized Difference Water Index(NDWI);: sensitive to changes in water content within
vegetation and soil (e.g., moisture levels, which can be indicative of stress in vegetation or
changes in hydrological patterns due to degradation).

(2) Enhanced Vegetation Index (EVI): enhances
sensitivity in areas with dense vegetation
(including dense canopies or high levels
of aerosols). It also corrects for
atmospheric influences, making it more
robust in areas with atmospheric
interference.

Dead Leaf Healthy Leaf (0.50 - 0.09) / (0.50 + 0.09) = 0.69 (0.40 - 0.32) / (0.40 + 0.32) = 0.11



Degradation Mapping using NDVI, NDWI & EVI Thresholds
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Estimating Area (ha) of Degradation (2021-2023)

Baseline ' Neumann Based on the # of piXE'S,
in 2021, 2022, and 2023,
Neumann's coffee plots
exhibited reduced
degradation in total area
(hectares) across time.
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However, for 2022 and
2023, the Baseline

| I coffee plots showed
A y more reduction than

2022 2023 Neumann's plots.
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Estimating Biomass Change
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Estimating Biomass Change

5000.00

4500.00 :
Managed plots remained

4000.00 stable or showed biomass
3500.00 increases, suggesting
effective conservation
3000.00 :
practices.
2500.00
i Changes in biomass over
2000.00 : :
time are directly related to
150000 carbon storage, helping to
1000.00 guantify CO2 emissions and
the environmental impact of
500.00 -
forest degradation.
0.00

2020 2021 2022 2023
M Baseline 3175.83 3098.63 3186.39 3273.61
m Neumann 4114.33 4051.73 4171.70 4292.52
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Estimating CO, Sequestration Over Time (2020 — 2023)

CO02 Sequestration Over Time
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In 2021, forests had the lowest CO,
sequestration due to reduced biomass. By
2023, CO, sequestration increased
significantly as the forest recovered and
stored more carbon.

This trend reflects the fluctuations in
biomass and carbon sequestration rates in
managed and unmanaged coffee plots.
The increase in stored carbon is positive
for climate mitigation efforts, though it
also highlights the importance of
protecting these forests to avoid future
carbon release.
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